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Abstract— Real-world robotic grasping can be done robustly
if a complete 3D Point Cloud Data (PCD) of an object is
available. However, in practice, PCDs are often incomplete when
objects are viewed from few and sparse viewpoints before the
grasping action, leading to the generation of wrong or inaccu-
rate grasp poses. We propose a novel grasping strategy, named
3DSGrasp , that predicts the missing geometry from the partial
PCD to produce reliable grasp poses. Our proposed PCD com-
pletion network is a Transformer-based encoder-decoder net-
work with an Offset-Attention layer. Our network is inherently
invariant to the object pose and point’s permutation, which
generates PCDs that are geometrically consistent and completed
properly. Experiments on a wide range of partial PCD show
that 3DSGrasp outperforms the best state-of-the-art method
on PCD completion tasks and largely improves the grasping
success rate in real-world scenarios. The code and dataset are
available at: https://github.com/NunoDuarte/3DSGrasp.

I. INTRODUCTION

Robotic grasping has recently gained increasing attention
because of its essential role in many real-world applications,
such as domestic and collaborative robotics. The seminal
work of Pas et al. [1] uses 3D Point Cloud Data (PCD)
to generate grasp poses directly on the available 3D object
structure. However, in real practical scenarios, we often have
to rely on incomplete geometric information acquired from
single or few viewpoints, which leads to a drastic reduction
of grasping success rate.
Researchers bypassed this problem by acquiring complete
3D object scans [2] but this requires a feasible camera path
around the object, which is time-consuming to obtain and
not always feasible. Another strategy is to place additional
sensors around the object of interest [3], but this is not cost-
effective and it requires careful calibration.
Instead, this paper aims to improve single-view grasping by
predicting the missing geometrical structure from a partial
PCD. 3D shape completion is an inherently ambiguous
problem but recent learning-based approaches have provided
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Fig. 1. Overall pipeline of the proposed 3D robotic grasping strategy. We
first capture a partial PCD from a single view of the object using a depth
sensor located on the Kinova robotic arm. We then feed the single-view
PCD to the completion network and produce a completed PCD. Finally, we
generate the grasp pose and execute the grasp with a feasible trajectory for
the robot.

encouraging results on different classes of objects. Initial
shape completion solutions [4], [5] converted the 3D point
cloud to a voxel grid with the rendering of additional data
that increases processing time and memory requirements.
More efficient networks [6], [7] were inspired by the Point-
Net [8] architecture that directly processes unordered PCDs.
However, most of these methods have been evaluated on
synthetic, noise-free datasets, far from real-world scenarios.
Differently, this work proposes a new model for 3D point
completion that can operate in a realistic scenario for robot
grasping with arbitrary object classes. Our method adopts
a transformer-based network [9], and it proposes a mod-
ification of an Offset-Attention layer [10], [11] with the
introduction of skip-connections that is able to complete the
partial PCD as extracted from just a single depth camera
frame. By completing the point cloud, the computation of
the grasp poses can leverage the additional information of a
full PCD.
Our proposed grasping pipeline is shown in Figure 1. With
the calibrated camera equipped on the robotic arm, we first
acquire the PCD and segment the background information
using PointNet++ [12]. The segmented partial PCD of the
object is then normalised, i.e. scaled and centered, and
fed to the PCD completion network to predict the missing
geometry of the object. We then map back the predicted point
cloud in the real-world scene reference in order to merge
the predicted missing PCD with the observed partial input.
Furthermore, we generate the grasp pose on the top of a
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virtually completed point cloud using the method proposed
in Grasp Pose Detection in Point Clouds (GPD) [13]. Finally,
we utilise Moveit! [14] to plan the arm trajectory that moves
the gripper to the pose estimated by GPD.
We first evaluate our PCD completion method on a PCD
completion benchmark dataset [4] that has been generated
on the top of YCB dataset [15], by training all the state-
of-the-art methods (from scratch) using the same dataset
(and split), and outperform the reconstruction error of the
best state-of-the-art methods. Then, we test the proposed
grasping pipeline in a real scenario using a Kinova arm,
our completion network, and GPD. Our method provides
accurate completions for successful grasp poses, which en-
close the self-occluded parts of the object. Thus, the set of
promising grasp hypothesis is larger, which improves the
overall success rate score.
To summarise, these are our main contributions:

• We propose a novel partial PCD completion network
based on the Offset-Attention encoder-decoder Trans-
former, that achieves state-of-the-art PCD completion
performance when evaluated on the partial version of
the YCB dataset proposed in [4].

• We integrate and test our grasping pipeline with a Ki-
nova arm, showing a significant improvement in robotic
grasping success rate.

• We present extensive ablation studies on the architecture
of our proposed completion network to best justify our
design choices.

II. RELATED WORK

We mainly cover related works addressing shape completion
with 3D data and robotic grasping.
3D shape completion. In environments where objects are
not placed on top of others, such as cupboards and shelves,
object shape completion can provide additional grasp poses
that augment the selection range.
Given the incomplete partial 3D data as the input, the aim is
to predict an approximation of the complete shape. 3D shape
completion methods can be categorised into geometric and
data-driven approaches [16]. Geometry-based methods [17],
[18] assume the presence of shape priors, such as geometric
primitives, symmetry and structural repetition [19]. However,
the application of these priors may lead to less accurate
reconstructions for large-scale datasets and real-world 3D
data. Data-driven (i.e. learning-based) approaches rely on
deep neural networks that discover the shape completion
priors from the data both at local and global point cloud
level [20], [16].
In earlier works, the irregular 3D data (i.e., raw point cloud)
is converted to a regular data representation (i.e., voxel grid),
where 3D CNNs applied on voxelized inputs have been
widely adopted for the pure 3D shape completion task [16]
and for shape completion for improving grasp estimation [5],
[4]. However, the cost of memory usage and computational
time for such methods is very large [8].
Instead, PCN [6] directly uses raw PCD for shape completion
tasks, and it is based on an encoder-decoder architecture.

The encoder is a PointNet-based backbone network that
provides global features. The decoder has two stages, one
estimates a coarse point cloud by applying an MLP. After
that, FoldingNet [21] is used to generate the detailed and
completed point cloud. Following PCN, a range of learning-
based methods for pure 3D shape completion tasks from PCD
were proposed [7], [22], [23], [24] to improve the resolution
and robustness of the reconstructed PCD, while others [25],
[26], [27], were proposed for improving the performance
of grasp success rate by directly processing 3D PCD for
completing the shape of the object. PoinTr [24] was the first
PCD completion system to adopt the Transformer architec-
ture [9], leading to a significant improvement in performance.
Later, [27] introduced a transformer-based network for object
completion that consists of an encoder-decoder architec-
ture, where the encoder is a conventional Multi-Head Self-
Attention module, and the decoder is based on the AtlasNet
[28]. Although the authors improve the reconstruction result
of the GRnet [29] network that uses 3D grids to regularize
unordered PCD for point cloud completion, they do not
compare their results with PoinTr [24], which consistently
outperforms GRnet. In addition, the alignment between the
partial point cloud and the reconstructed one requires a 6D
pose estimation module. In contrast, our method accurately
aligns the observed point cloud with the reconstructed one.
Additionally, according to our experiments, we improve the
reconstruction results compared to the state-of-the-art and
provide more promising grasp poses.
Vision based Robotic Grasping. Robotic Grasping aims to
find the optimal pose of the robot’s end-effector that leads
to a successful grasp of an object. In one way, model-based
methods consider contact points and exerted forces to select
the grasps that provide more stability, but the evaluation
is usually in simulation, which suffers from a large reality
gap [30]. On the other, data-driven approaches aim to map
directly perceptual input such as RGB [31], [32] and RGB-D
images [33], [34], [35], to the grasp success. Recent methods
take advantage of model-based and data-driven approaches
by generating data samples and labels from simulations using
domain randomization [33], [34], [35].
Current approaches are able to map 6DoF pose candidates to
point clouds [36], [13], [35], [37], [12], addressing successful
grasping in cluttered scenarios. From the perceptual point
of view, segmentation of the objects is very challenging, so
these approaches start by sampling grasp poses, followed
by grasp pose score computation and finally a refinement
pose procedure. Amongst the 6DoF grasping approaches, we
select Grasp Pose Detection in Point Clouds (GPD) [13] to be
used in our system, due to the computational efficiency of the
grasp sampling and score computation [37]. The main steps
of GPD are: (i) heuristics-based grasp candidate sampling
and (ii) binary classification of candidates by a CNN. A
detailed description of GPD is in Section III-C.

III. APPROACH

We assembled the setup as a Kinova robotic arm equipped
with a RealSense depth camera and Robotiq gripper; and an
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Fig. 2. Architecture of our point cloud completion network. Given the partial PCD as the input, we first apply FPS to the subset of the points representing
the center point CR of each local region LR. Then we use KNN to gather the points around each CR and send them to DGCNN to extract embedding
feature FE. We then send the CR to a FC layer to learn the Positional Embedding PE. Furthermore, we concatenate PE with the corresponding FE to be
the input of the Transformer. As the output we predict the shape feature for a missing PCD PM and feed to the FoldingNet to generate high-resolution
PCD, then we merge the input PCD with the predicted output PCD to shape the completed PCD PC.

object O to be grasped. We then utilise the depth camera
to capture a depth image from a single viewpoint of the
scene. Furthermore, we convert the depth image to PCD
using camera parameters. The reconstructed PCD contains
only the visible part of the object from the camera’s point
of view (i.e partial 3D scan).
Given a partial 3D scan, containing background informa-
tion and a colourless partial PCD, we first segment the
partial PCD PP, PP =

{
PPi | PPi ∈ R3, i = 1 . . .N

}
N=2048,

using the PCD segmentation network presented in [12].
Then, we use our proposed completion network for pro-
cessing PP to predict the missing PCD PM, PM ={

PMi | PMi ∈ R3, i = 1 . . .M
}

M=6144, representing the miss-
ing point cloud of the complete shape. Furthermore, we
map back the predicted missing PCD to the real scene
and merge it with the partial PCD. Finally, we generate a
grasp candidate GK on the completed PCD using the Grasp
Pose Detection (GPD) network [13], which outputs a set of
grasp poses {Gk}, GK = {GK1,GK2, ...GKV}V=5 with their
corresponding classification scores CS. Lastly, the grasp with
the best classification score GKBCS that is considered feasible
by MoveIt! [14], is executed on a real robot.
In Section III-A, we introduce a dataset pre-processing
step and address the PCD alignment problem for the PCD
completion task. Section III-B describes the proposed point
cloud completion network in detail and the defined loss
functions used for training the network. Finally, Section III-C
describes the grasp pose generation and evaluation network.

A. PCD alignment pre-processing

Data normalisation is a primary stage for improving the
generalisation of deep models on the learning process [38].
However, standard PCD completion approaches use a data
normalisation that is not applicable to grasping problems.

The centroid of each PCD in training is given by the
centroid of the completed (full PCD) object either from CAD
model [39], [40] or the Ground-truth (GT) PCD [6]. This is
not an issue in general, as PCD completion protocols during
testing provide the partial shape aligned with the centroid of
GT. Differently, in a real testing scenario, the shape centroid
can only be computed from partial PCDs and thus being
different from the GT one. For this reason, the pre-processing
of PCD in training has to take into account that the centroid
available is only related to the partial PCD. Otherwise,
the completed PCD would be misaligned as shown in the
ablation studies in Section IV-A.

In this work, we have proposed a simple but effective
technique to solve this problem without using GT infor-
mation. Given the partial PCD {PP}, we first calculate the
translational offset vector {Tp ∈R3}, where Tp =

1
N ∑

N
i=1 PPi.

We then calculate the centered PCD {PP}c as; PPc =
PP−Tp. Furthermore, we normalise the scale {SP ∈ R} as;
SP = maxi ∥PPi −Tp∥2, where ∥ · ∥2 is norm-2 and the final
normalise PCD {PPn} is defined as: PPn = PPc/SP.

Tp and SP are the normalisation parameters calculated from
the partial point cloud. However, to avoid the misalignment
phenomenon, instead of separately calculating the offset and
the scaling for ground-truth point cloud PGT , we simply
apply the same parameters (i.e., Tp, Sp ) achieved by the
normalisation of PP on Pgt such that: PGT c = PGT − Tp
and PGT n = PGT c/Sp. In this way, we precisely align the
GT PCD with the partial one, and we also consider the
partial PCD as a reference PCD which is the application
for a real-world scenario. After normalising the dataset, we
apply FarthestPointSampling (FPS) to sample 2048 points
for a partial PCD and 8192 points for the GT PCD.
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B. Point cloud completion network
This section illustrates in detail how the proposed Trans-
former completion network predicts the missing geometry of
the 3D data. The architecture is inspired from [24], but using
an Offset-Attention [11] instead of the usual Self-Attention
encoder-decoder block, which was shown be more suitable
to process PCD given its intrinsic invariance to rigid transfor-
mation. Moreover, we propose Skip-Connections among the
layer of the encoder and decoder for better generalisation of
the network. The network is composed of three main blocks:
The PCD embedding, the Transformer block consisting of the
Offset-Attention encoder-decoder layer, and the block that
generates the PCD for the missing part.

1) Point cloud embedding: The Transformer architecture
requires an ordered sequence of vectors (e.g. like words in a
sentence). However, PCD is invariant to permutations, (i.e.,
by changing the point sequence order there should be no
difference in the description of the shape of the object).
To address this property of PCD, in this work, we follow
the pipeline as in [24]. We divide partial PCD PP into
the set of Local Regions LR, LR = {LR1,LR2, ...LRR}R=128
by applying FPS [12] and then we represent the centroid
as CR,

{
CRi |CRi ∈ R3, i = 1 . . .B

}
B=128, of each LR. We

then apply KNN [41] to find the points around each CR.
Furthermore, we feed the points in each LR into the PCD-
backbone network [41] (DGCNN) to compute the embedding
feature FE, FE = {FE1,FE2, ...,FEB}B=128. We also feed
each CR to the f ully− connected (FC) layer to extract the
positional embedding PE (i.e., describe the location of each
subset of the points in each LR [9]) for each FE. Finally,
we concatenate the PE with the corresponding FE to be the
input FI, FI = {FI1,FI2, ...FIJ}J=128 of the Offset-attention
Transformer encoder network.

2) Transformer architecture: We propose to use a multi-
head Offset-Attention encoder-decoder Transformer layer
[11], [10] for PCD completion task since Offset-Attention
layers have been shown to be advantageous over the usual
self-attention layer on point cloud segmentation and clas-
sification. This is especially important in robotic grasping
contexts where the relative pose between the object and end-
effector is arbitrary. The real-world point cloud completion
task must be independent from the initial pose of the object
as the camera can see the object from different positions.
By using the Offset-Attention layer, we take advantage of
its invariance to rigid transformations, resulting in a more
robust object completion. Fig. 3 shows the architecture of
the Offset-Attention layer, where the offset is calculated
by measuring the difference between the input features FI
and Self-attention features SA, SA = {SA1,SA2, ...SAJ} by
subtracting one from the other FIJ −SAJ .
Given a sequence of the input features FI, we formulate
the encoder as: AE = E(FI), where E is the encoder and
AE = {AE1,AE2, ...AEw}W=1024 is the output feature vector
of the encoder. The Offset-Attention in the encoder layer
first updates the input features FI. Then, we feed the output
of the encoder to the FC layer, followed by a Max −
Pooling (MP) operation. Moreover, to force the encoder

Fig. 3. The Offset-Attention layer measure the difference between the
Attention and the input feature.

to learn and generalise better about the global complete
shape information, we predict the sparse PCD PS, PS ={

PSi | PSi ∈ R3, i = 1 . . .S
}

S=192, where PS is the predicted
PCD, representing the complete shape of the object with
a lower number of points. We predict PS by passing the
generated feature vector AE (i.e., the output of the encoder)
to the queries Q layer that contains FC. Then we reshape
the output of the FC layer to S×3 to create PS.
On the other hand, the Offset-Attention decoder layer D
shares the exact architecture of the encoder network ex-
cept for having cross-attention mechanisms [42]. We for-
mulate the decoder architecture as AD = D(Q,H), where
Q = {Q1,Q2, ...QX}X=192 is a set of queries and AD =
{AD1,AD2, ...ADY}Y=512 are the predicted output features
representing the feature vector of the missing point cloud.

3) Point Cloud Generation: The main objective of our
proposed PCD completion network is to predict the missing
point cloud representing the unseen part of the object. To
do that, we feed the predicted feature vector AD (i.e., the
output of the decoder) to the FC layer, followed by Max-
pooling and another FC layer. Furthermore, the output of the
last FC layer will be concatenated with the predicted sparse
point cloud PS reconstructed by query Q, and pass through
another FC layer. Then, we utilise FoldingNet [21] FN
which is able to output a high-resolution PCD by applying
Fold operation on the output predicted feature vector of the
missing PCD from the decoder. We can define the point
cloud generation process as: PM = FN(AD)+PS, (symbol
’+’ represents set concatenation) where PM is the prediction
of the missing parts of the point cloud. The predicted missing
point cloud PM will be merged with the partial input point
cloud PP to shape the final complete point cloud PC where
PC =

{
PCi ∈ R3, i = 1 . . .Z

}
Z=8192. We also fed the output

feature vector of each encoder layer (by an element-wise
summation) to the corresponding decoder layer using Skip-
Connections (see Table II for our design choice).

4) Network training: Training is achieved by summation
of the Chamfer-Distance (CD) loss between the sparse and
completed point cloud and Ground-truth point cloud:

L = Lcd (PS,PGT )+Lcd (PC,PGT ) ,

where Lcd is the Chamfer-Distance loss [6], PGT is the
ground-truth PCD, PC is the the completed PCD, and PS
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TABLE I
COMPARISON OF L2 CD LOSS IN DIFFERENT POINT CLOUD COMPLETION MODELS ON YCB DATASET. WE REPORT THE RESULT

OF 13 SEEN CATEGORIES AND 4 UNSEEN CATEGORIES.
Method Avg Drill box Ball Tomato Soup Cleanser Comet Bleach Sugar box Mustard Lemon Morton Salt Pringles Pitcher Sponge Cup Block Cracker Box Banana Stack Blocks
TopNet [43] 2.51 2.18 2.24 1.98 1.84 1.84 1.79 2.01 2.51 1.87 1.70 1.99 2.24 2.84 3.32 3.56 3.90 7.52
FoldingNet [21] 2.28 2.01 2.19 1.81 1.66 1.59 1.48 1.87 2.29 1.63 1.55 1.82 2.18 2.53 3.10 3.14 3.33 7.01
PCN [6] 2.07 1.86 1.95 1.59 1.48 1.41 1.62 1.98 1.42 1.50 1.46 1.69 2.00 2.05 2.89 2.93 2.99 6.53
MSN [7] 1.98 1.81 2.0 1.49 1.39 1.44 1.51 1.88 1.25 1.38 1.52 1.63 1.84 1.91 2.92 2.65 2.78 6.41
PoinTr [24] 1.15 0.83 0.95 0.99 0.83 0.68 0.64 0.79 0.91 0.83 0.61 0.72 0.87 0.98 1.46 1.32 1.5 5.91
3DSGrasp 0.92 0.64 1.00 0.81 0.52 0.49 0.48 0.53 0.99 0.65 0.40 0.68 0.51 0.70 1.18 1.15 0.98 4.89

TABLE II
ABLATION STUDY ON THE NETWORK DESIGNS.

Model Skip-connection Offset-Attention L2 CD
A 1.15
B ✓ 1.02
C ✓ 0.98
D ✓ ✓ 0.92

TABLE III
ABLATION STUDY ON THE NORMALISATION TECHNIQUE EFFECT IN

L2 CD LOSS

Method Baseline norm. Our norm.
PCN 2.59 2.07
PoinTr 1.66 1.15
Ours 1.44 0.92

is the predicted sparse PCD. We supervise both PS and PC
using Ground-truth completed point cloud during training to
force both the encoder and decoder about the complete shape
of the GT PCD.

C. Grasp pose generation

To generate the 6DoF grasp pose candidate for the two-
fingered gripper, we use the Grasp Pose Detection (GPD)
network introduced in [13]. GPD uniformly samples points
in a Region of Interest (ROI) at random. ROIs are selected
from an image-based object detection algorithm, but the
algorithm can be tailored to the application’s constraints. On
the randomly sampled points of the ROIs, a local search
heuristic is applied to find suitable orientations in the vicinity
of each point, so a grasp candidate GK corresponds to the
sampled point and selected orientation. Then, the candidates
GK are classified as graspable by a four-layer CNN. The
input of the CNN is a multiple-view representation of the
(clipped by the gripper) point cloud. To obtain the views,
the PCD is voxelized, and the voxels are projected onto
orthogonal axes. Finally, the grasps are ranked according to
the output of the last layer of the CNN before the application
of the Soft-max function. Thus, the classification score CS
provides the ranking of GK. In real-world experiments,
grasps are executed according to their ranks. Each grasp
candidate corresponds to the goal pose of the end-effector
of the robotic arm. We use MoveIt to compute a collision-
free trajectory for the arm to reach the target pose.

IV. EXPERIMENTS

The experiments are divided into two parts. In Section
IV-A, we first evaluate the performance of our proposed
PCD completion network against a range of state-of-the-art
methods on the partial YCB dataset [4]. We also perform

Fig. 4. Qualitative results of generated grasp proposal on the top of partial
and completed PCD of 4 objects using our PCD completion network. The
partial PCDs are acquired by the real sensor on the Kinova robotic arm.
Each candidate grasp pose generated by GPD is color-coded with green to
red representing the score from high to low.

extensive ablation studies to justify the design choices of our
PCD completion network architecture in terms of the Offset-
Attention encoder-decoder and the skip-connection. We then
present real robotic experiments in Section IV-B utilising a
Kinova robotic arm equipped with an RGB-D sensor. We
evaluate the grasp success rate of 3DSGrasp (i.e., GPD
with our PCD completion network) in comparison to the one
using only partial PCD. A grasp is considered successful if
the object is held (i.e. does not fall) after lifting it up.

A. Evaluation on 3D shape completion

Dataset. We use the partial version of the YCB dataset [4],
which is a popular choice in PCD completion for robotic
grasping [5]. We randomly sample 50 views from the training
set (Training Views), 50 views from the holdout view set
(Holdout Views), and 50 views from the holdout models
set (Holdout Models). We evaluate the completion network
on holdout views and holdout model sets and the training
is achieved with only the training set split. As the exact
train/test split is unspecified in [4], for a fair comparison
with the state-of-the-art methods on PCD shape completion,
we train all compared methods using our own split dataset.
All PCDs are pre-processed as described in Section III-A for
normalisation and sampling.
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TABLE IV
REAL ROBOT EXPERIMENT RESULT.

Method Avg Pringles Drill box Mustard Mug Cleanser Clamps (biggest) Drill Jell-o Baseball Pitcher with lid
GPD [13] 46% 50% 0% 50% 70% 60% 30% 40% 80% 60% 20%
GPD + ours 76% 80% 80% 80% 80% 70% 70% 80% 90% 90% 40%

Comparison. We compare our proposed PCD completion
network against a range of state-of-the-art methods for shape
completion in terms of the L2 Chamfer-Distance loss [6]
(multiplied by 1000) between the reconstructed, and the
Ground truth PCD. For a fair comparison, we train from
scratch (all the mentioned methods using the same dataset
and split) and test against the existing PCD completion
networks such as FoldingNet [21], PCN [6], MSN [7], and
PoinTr [24] on the partial YCB dataset using their open-
source code with their best hyper-parameters. We are unable
to fairly compare against [27] as the code is unavailable.
As shown in Table I, on average, our completion network
achieves the lowest reconstruction loss among the competi-
tors, outperforming the state-of-the-art method (i.e., PoinTr)
by +0.23.

Ablation. We perform extensive experiments to justify our
network design choices in terms of Offset-attention and
skip-connection using the partial YCB dataset. Moreover,
we evaluate the effect of our proposed PCD alignment
processing technique on PCD completion performance.

Does the Offset-attention and skip-connection improve
the PCD completion accuracy? We evaluate the impact
of our proposed Offset-Attention encoder-decoder layer and
skip-connection on the PCD reconstruction error. A set of
variant models are studied: model A is the baseline Trans-
former with Self-Attention encoder-decoder layer, model B
adds Skip-connection between the encoder and decoder to the
baseline model, model C replaces Self-Attention with Offset-
Attention layer and model D adds both skip-connection and
Offset-Attention layer to the transformer. As shown in Table
II, we observed that using skip-connection can improve the
performance of the baseline model by +0.13. When using
the Offset-Attention layer (model C) instead of the Offset-
Attention layer (model A), we observe an improvement
to 0.98. The best result is achieved by model D when
adding both skip-connection and Offset-Attention layers to
the transformer.

Does the PCD pre-processing help with PCD completion?
We evaluate the effect of our proposed PCD pre-processing
technique on point cloud completion using our completion
network, PCN [6] and PoinTr [24]. The Baseline norm.
stands for normalising the GT and partial PCD with the
same formula but different parameters and Our norm. use
the parameters of partial PCD to normalise GT PCD (See
Section III-A). As shown in Table III, our network achieved
the lowest reconstruction error compared to the other two
methods using both PCD processing techniques. Moreover,
there is a large reduction in PCD reconstruction error when
applying our proposed pre-processing technique to all meth-
ods.

B. Evaluation on robotic grasping

We perform the real-world experiments utilising a Kinova
Gen3 robot equipped with a Robotiq 2F-85 gripper for
grasping and an Intel RealSense D430 depth camera to
capture the point cloud. During the experiments, an object is
placed on the table and the robot starts at a predefined initial
pose facing the object as shown in Figure 1. For each test,
the partial PCD of the object is extracted by removing the
background information using a PCD segmentation network
[12]. Then, the segmented point cloud is fed to our com-
pletion network. Finally, the GPD [13] network generates
and ranks grasp candidates for both the completed and the
partial PCD. The final grasp is chosen as the best ranked
and with a feasible solution when sent to the MoveIt! motion
planner. Our method takes about 2 seconds for segmentation,
2 seconds for completion and 6 seconds for planning a grasp.
Each object is grasped 10 times at different poses w.r.t.
the arm in its workspace. We compare GPD vs. GPD with
3DSGrasp in Table IV, where GPD with 3DSGrasp consis-
tently outperform GPD without object PCD completion. For
example, the drill box dimensions (specially width, see Fig.
4) are not captured by the partial PCD, which results in a
low success rate due to collisions with the object. With our
method, the completed PCD can better address this issue
after correctly reconstructing its shape. Another hard case
is the Pitcher with a lid given the size of the object and
the gripper’s maximum aperture. Since the lid reduces the
available grasp poses from the top, only grasps from the
handle are feasible. Nevertheless, our 3DSGrasp doubles the
successful grasps compared to the baseline with partial PCD.

V. CONCLUSIONS

In this work, we propose a new system called 3DSGrasp
for improving the robotic grasp success rate in a real-world
experiment. The central core of the proposed system is the
PCD completion head with the ability to complete accurately
the missing geometry of the 3D objects that have not been
observed before and without moving the camera to extract
more information. We also proposed a new way to normalise
partial views of PCD, solving the misalignment problem that
improves the robotic grasp success rate and reduces PCD
completion error. With the experiment, we show that our
network achieves a state-of-the-art result on PCD completion
tasks and improves the average grasp success rate by a large
margin. In future work, we will extend our work to multi-
object shape completion and grasping. Moreover, we will
investigate the possibility of a fusion between single-view
RGB image and 3D PCD within the framework of 3DSGrasp
, to boost the 3D completion accuracy and grasp success rate.
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