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Abstract—Observing how humans interact with each other
and how they manipulate objects, offer insight on interaction
mechanisms and how these are influenced by the physical
properties of the used objects. These insights can support a more
informed design of robot controllers meant to manipulate objects
in collaboration with humans.

In this work we study human-to-human handovers of cups
filled with various amount of liquid and textures, and investigate
to which extent the manipulation strategy depends on : (i) the
individual preference, (ii) whether the cup is filled with water
or not, and (iii) the cup physical properties. An analysis of the
human giver’s hand acceleration, velocity, and position during
the handover of different cups under two liquid level conditions,
allows to distinguish between careful and not-careful (normal)
manipulation. We quantify to which extent the liquid level inside
the cups influences the carefulness level of human manipulation.
Lastly, our study reveals that the cups’ physical properties, such
as fragility, breakability, and deformability, play a role in shaping
the carefulness of the manipulation.

We apply these findings to human-robot scenarios by devel-
oping a robot controller capable of detecting, in real-time, if
the human is being more careful than normal, and adapting
the robot’s approach of interaction accordingly. Additionally, we
show that the detection of a careful manipulation, depending
on the experimental context, may provide the robot with infor-
mation concerning the human partner’s intention or need for
(manipulation) assistance.

Index Terms—Human Motion Understanding, Human-Robot
Interaction, Non-verbal Communication.

I. INTRODUCTION

IT is our common experience that transporting a container
(such as cups, glasses, or mugs) filled with some liquid

is much more delicate than when it is empty. Mayer et al.
[1] put this common knowledge to the test by examining
people walking with a mug filled with coffee. They have
found that humans try to avoid spilling the content by either
estimating the frequency of sloshing of the liquid (moving the
hand so as to counteract the induced slosh), or by slowing
down and adopting a more careful manipulation. The choice
between these two strategies seems to be related to individual
preference. When it comes to programming similar skills in
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robots we argue it would be best to choose the latter option,
as it will be the most effective to prevent accidental spills.

Intention can be communicated either verbally or non-
verbally through our movements. However, the former is not
only computationally expensive it is also cumbersome for
anyone who has to dictate their intention back to the robot. As
such the latter has been extensively researched as an intuitive
and biologically-inspired alternative [2], [3], [4], [5]. A few
works have analyzed aspects such as decoding the action
intention from a robot’s eye and arm movements [6], judging
an objects’ weight from robot lifting movements [7], [8], or
understanding when to handover [9], [10]. Ortenzi et al. [11]
presented recently a survey on handovers in robotics. The
authors looked at human-to-human handovers studies and the
current approaches on human-robot handovers either for robot
giver (robot-to-human) and robot receiver (human-to-robot).
They identify two important phases of the handover: the pre-
handover phase, i.e. the approach, and the physical phase, i.e.
grasping and releasing. In the pre-handover phase, which is
the scope of this paper, there are several works that proposed
strategies for human-robot handovers, inspired by human-
to-human handovers. The existing approaches have focused
mainly in reproducing human-like motions [12], [13], [14],
estimating the handover location [15], [16], or user satisfaction
[17], [18], [19]. The assumption in the state-of-the-art is that
the human handover motion is a purely functional motion.
Instead, we argue that it can be modulated (and therefore
express) latent features related to the object or the human
action intentions. The state-of-the-art does not study human-
to-robot handovers where the robot is capable of distinguishing
types of handovers: a normal handover, or a challenging
handover where the human resorts to perform it with extra
care, as presented by [1]. A recent work has addressed the
human manipulation of full and empty cups [20]. The authors
studied the kinematic motion during pick & place and were
able to distinguish between careful and not careful motions
by inspecting the complete trajectory of the motion. Instead,
our work is on human-to-human handovers which adds an
interactive variable of “informing” the other partner whether
the cup requires extra care to manipulate. Additionally, our
approach is not only capable of online classification, without
needing the complete trajectory, but it has been applied to
real-time human-robot interactions.

This paper aims at providing an in depth scope of the
manipulation strategies for cups filled with water or com-
pletely empty. The objective of the analysis is to identify and
extract features to recognize human careful and not careful
motions during human-human trials and apply it to human-
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robot scenarios. The focus is not on the effects of the weight,
which is a user-dependent variable (the stronger you are the
lower the manifestation), but instead on the challenge of
transporting liquids and the underlying effects of the object
properties on the transportation. Potential applications can be
a factory plant, where robots can infer inherent properties
of objects from human manipulations, such as fragility or
breakableness. Alternatively, a robot caretaker can study the
senior residents various levels of musculoskeletal limitations
and adapt its motor constraints when assisting them.

Our contribution is fourfold: (i) show how the kinematic
data of human-to-human handover movements reveal two
distinct giver’s carefulness levels, that change with empty or
full cups; (ii) learn “carefulness” hand-over models, both for
careful and not-careful (careless) human-to-human handovers;
(iii) apply the model to a robotic controller to recognize
during human-to-robot interactions (handovers, pick & place,
and box carrying) whether the human is being careful when
transporting the object in free space; and (iv) adapt the robot’s
motor control approach to the type of carefulness motion.

We start in Section II by detailing the human-human in-
teraction (HHI). The wrist’s kinematic data from the HHI
dataset during cup handover is employed in a feature extraction
model. The model learns two manipulation strategies, care-
ful and careless behaviour. The model, presented in Section
III, is compared against a baseline model and evaluated in
terms of distinguishing handovers of empty cups as natural
manipulations (not careful), and water filled cups as careful
manipulations. In Section IV the model is tested to under-
stand the impact of cups properties and other datasets on
the model’s accuracy. The best model is incorporated in a
robotic controller. Section V presents the real-time human-
robot interaction (HRI) experiments. Section VI is reserved
for discussion and presentation of future work.

II. HUMAN TO HUMAN HANDOVER

This section presents the human-to-human handovers from
which human motions during handovers are extracted. The
first scenario presented is used for analysing the human
manipulation strategy when handling a cup under two liquid
level conditions. Moreover, the proposed models are designed
based on the first scenario findings. The other two scenarios,
introduced later, are included to further evaluate the careful-
ness detection accuracy of the proposed models.

A. Handover Data

The first dataset used is from a collaboration between École
polytechnique fédérale de Lausanne (EPFL) and Karlsruher
Institut für Technologie (KIT) [21]. We refer to it as the EPFL-
KIT dataset1 from now. It involves picking up an object and
passing it to another person which receives it and places it
back on the table. This is repeated several times with each
pair of participants. There is a total of 157 handovers, 81
of empty cups and 76 of full cups, respectively. Figure 1
shows the different cups for each of the participants. The

1https://www.epfl.ch/labs/lasa/datasets/

handover trajectories in the EPFL-KIT dataset are recorded
at 120 Hz, taking on average 1-3 seconds, corresponding to
100-300 data points. A total of 4 participants, aged between
25-35 years old, with a graduate academic level, participated
in the experiments. The recorded data includes motion tracking
markers from the OptiTrack system on the participant’s wrist
and the cups, as well as data gloves from the CyberGlove
system on the participant’s hand.

Fig. 1: Each of the four participants is holding one of the four
cups. From left-to-right then top-to-bottom it is the transparent
cup, champagne cup, red cup, and the wine glass. The first
three are made of plastic and the last is glass.

The handovers of the cups happen under two distinct situa-
tions: (i) an empty cup, and (ii) a cup 90% filled with water.
Each participant hands over the different cups to a second
participant (also present in the dataset but not analysed during
the handover) and each cup is manipulated in both conditions.
The cups relevant for this work are, shown in Figure 1, the red
plastic cup (bottom-left), the transparent plastic cup (top-left),
the champagne plastic cup (top-right), and the opaque wine
glass (bottom-right).

B. Handover Analysis

The handover motions are 3D Cartesian coordinates over
time which begin at the moment of pickup (grasp) and finish
when the cup is safely held by the other participant (handover).
During the experiments, the participant could grasp the cup
multiple ways (top of the cup, higher or lower from the
side, etc) and the handover location could be in a 3D space
bounded by the table as seen in Figure 1. This gave rise
to several different grasp configurations and a disparity in
the duration/length of the handover trajectories. Bear in mind
that it was not possible to re-grasp the cup or change grasp
configuration during the handover, and the cup would have to
start upwards on the table for every interaction.

In order to analyse the kinematic of the wrist for all
handovers for every participant, and every cup in both cup
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(b) (c)

Fig. 2: (a) is the mean µ and standard deviation σ of the
handover actions of the dataset separated in the two cups
conditions (empty and full). The velocities of the human wrist
are plotted over the trajectory of the handover. The trajectories
are normalized. (b) is the peak velocity and (c) the peak
acceleration, for each handover action and both conditions. p-
values for peak velocities and acceleration of both cup levels
are shown on the top each plot. Confirmation of significant
difference is highlighted using a star.

conditions it was decided to normalize all the handovers to
a standardized fixed length. Hence it was applied a min-max
normalization before reducing the dimensionality to a vector
by calculating the euclidean norm of the x, y, and z Cartesian
coordinations. This re-scales the data to a [0, 1] dimension
where 1 is the final step, refer to as the handover, and 0 is
the initial step, representing the moment of pickup. The plot
in Figure 2 shows the velocities’ mean and standard deviation
for the human giver’s hand throughout the handover in the
entire EPFL-KIT dataset distinguishing both empty and full
cup conditions.

Throughout our analysis, the common trait of all demonstra-
tions is the typical bell-shape for the velocity profile as humans
choose a minimum jerk approach for the hand trajectory. This
has been identified in previous works in point-to-point human
motion [22] and this behaviour manifests, likewise, in object
handovers. In contrast, the most notable difference is on the
bell-shape peak, i.e. the maximum velocity reached by the
human. Analysing the peak velocity box plot in Figure 2, the
difference is noticeable when distinguishing the cups by the
level of water contents. The one-way ANOVA test revealed
a statistically significant difference between the peak velocity
of both cup conditions (F(1,98) = 23.19, p < 0.001). This
is fairly straightforward as a cup filled with water presents
an additional challenge during manipulation, in other words,
transporting the contents inside without spilling or breaking.
There is also the added weight of the liquid to the overall
mass of the cup, however, we argue that the effect of a liquid
oscillating inside a cup during human transportation is more
impactful in deterring quick and jerky movements than a
particularly heavy object. The peak acceleration, as seen in
the box plot of Figure 2, is not as relevant to differentiate
the two cup conditions. The one-way ANOVA test did not
reveal a statistically significant difference between the peak
acceleration of both cup conditions (F(1,98) = 2.16, p =
0.1453).

From the kinematic motion, it is clear that in any handover
motion there are two distinct stages, an acceleration stage
and a deceleration stage. This is in line with a minimum-jerk
motion which starts and ends with the wrist in rest positions.
It is also evident the disparity of the two water conditions
for those two stages. The empty cup condition is showing
a much steeper acceleration and, consequently deceleration,
to reach the rest position. This feature, which has been
addressed above, can be utilized to differentiate the two types
of manipulation strategies: careful and not careful. Another
point is related to familiarization with the task and object.
As humans repeat an exercise multiple times they tend to
gather prior knowledge from past events, and in this particular
scenario, estimate the object’s mass and the required force to
manipulate. As a result, a novel object with an unexpected
heavy mass might invoke a slower manipulation in the first trial
but after some attempts, there is a pre-activation of muscles
and joints to anticipate the requirements which may result in a
more natural manipulation. This familiarization with the object
properties can occur when there is liquid inside but the risk of
spilling is constantly present. Hence the manipulation strategy
will not change significantly because it is bound to the risk
assessment. For this reason, we consider the level of water to
be the most important factor.

In this section, we presented the human-human experiments
studies and the datasets collected. From the first dataset,
the handover trajectories were post-processed to extract the
acceleration and deceleration phase of the wrist movement
for any handover of empty or full water cups. The analysis
has shown that manipulating cups full of water would usually
originate in a slower, less abrupt motion, compared to empty
cups. In the next section, the handover segmentations will be
used for detecting different manipulation strategies.

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3222088

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 06,2023 at 16:40:06 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. ?, NO. ?, ? 4

III. MODELLING OF HANDOVER MANIPULATIONS

In this section, we present the models for human manipulation
of cups in the two conditions: (i) empty cup, or (ii) water level
at around 90 %. From the discussion in Section II we can
argue that there are two possibilities for modelling the human
manipulation in the handover context: (i) the acceleration
phase, and (ii) the deceleration phase. This has been shown
in pick-and-place actions [23] where goal-oriented biological
motions are typically a minimum-jerk control problem with
an acceleration and deceleration phase [22]. The acceleration
phase begins with the object at rest position, the human grasps
the object, and then the object increases in velocity as it is
lifted up for transportation. The deceleration phase indicates
the approach stage to handover the cup to another person,
indicated by a gradual decrease in velocity until a stationary
state is reached for completion of the handover.

Figure 3 is a diagram of the control system for both
the acceleration and deceleration phase models. The overall
structure is identical for both models, the main differences are
the information used from the handover (Training Data) and
the Modelling technique itself. The Classifier and the Human-
in-the-loop control is identical. The following subsections
describe the two modelling techniques, the classifier applied
to the control loop and the advantages and disadvantages of
both models.

1st model2nd model

Careful
Behaviour

Not Careful
Behaviour

Belief
System

Y

X

Modelling
Classifier

Training Data

Handovers - EPFL Dataset

Human

Fig. 3: Carefulness detection controller loop for both models.
The 1st model learns from the deceleration phase of human
handovers (right-side of the trajectory - yellow region). The
2nd model learns from the acceleration phase (left-side of the
trajectory - blue region).

A. 1st model - Deceleration Phase

The deceleration phase was first used in the previous paper
[24] and it provided a direct comparison of velocities for the
two types of behavior. This was possible as the extraction of
the deceleration phase during the cup manipulation revealed
the maximum velocities and its evolution towards the resting
stage, i.e. handover meeting point. From this approach, we
model the velocity as a function of the distance towards the

handover for both situations. In this approach, the input x ∈
D ⊂ R+ denotes the distance of the human wrist towards the
meeting point. Considering two time-independent dynamical
systems (Ds),

ẋ = fff(x) (1)

one for the not careful manipulation (empty cups), and another
for the careful manipulation (full cups), where fff : R+ → R+

is a continuous differentiable function, with one equilibrium
point set at the origin with guaranteed Lyapunov conditions for
global asymptotic stability. Each DS is encoded using Gaus-
sian Mixture Models (GMM) which defines a joint distribution
function between the velocity and distance of the wrist, and
Gaussian Mixture Regression (GMR) generates the desired
velocity at each location during the handover for each of the
two models.

B. 2nd model - Acceleration Phase

In order to learn the latent features in the acceleration phase,
a new approach is selected. The reason for opting for a new
approach instead of applying the previous model technique is
due to not being capable of finding distinct features for the
two DS in the acceleration phase. This happens because all
handovers, regardless of the empty or full condition, start with
zero velocity and in a stationary position. On account of this,
the DS output would render the generated desired velocities of
both Careful and Not Careful behaviours indistinguishable. As
an alternative to GMR to model the acceleration phase of the
handovers we use the covariance matrix of the GMMs. The
covariance matrix Σ of the GMMs that encode ẋ = fff(x) ex-
presses the correlation between the velocity and position in the
handover space. The 1st Gaussian represents the steepest phase
in the acceleration and from Σ~v = λ~v the 1st eigenvector ~v for
both cup conditions is indicative of the direction of largest data
variance. Given that we analyse the handover data as velocity
and position, the eigenvector components ~v = [~vẋ, ~vx]T are
the velocity and distance component respectively, and the

~vẋ
~vx

gives the inverse of time (velocity divided by position), i.e.
the frequency of change of the wrist. As discussed in Section
II, the velocity profiles are usually distinct when manipulating
empty and filled with water cups, therefore the acceleration
model learned the “frequency” of the wrist (~vẋ~vx ) for either
condition which in the Modelling block represents the Careful
and Not Careful Behaviour.

C. Classifier - Belief System

Inspired in the adaptation mechanism of [25], the Classifier
is a Belief System that compares the Human-in-the-loop input
X with the generated Y for each behaviour (careful and not
careful motions). For the deceleration model, the real-time
velocity is the current velocity

X = ẋt
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and the generated Y = fff are the DS velocities, as for the
acceleration model, the real-time “frequency” of the wrist is
computed as

X =
ẋt − ẋt−1

xt − xt−1

and the generated Y =
~̇x
~x , as the “frequency” of the wrist for

Careful and Not Careful. The Belief System is as follows:

e = X −
∑2

i=1 b
t
iYi

ḃti = ε(eT fffi + (bti − 0.5)|fffi|2) ε ∈ R+

bt+1
i ← bti + ḃti∆t

B = [b1, b2]
∑2

i=1 bi = 1

(2)

where B provides the belief that the new handover is one of the
carefulness motions. This is calculated as the error function
comparing the real input data and the output of the trained
models. The adaptation rate ε is the hyperparameter common
in both models. It weighs the effect of past information on the
current step, i.e. memory from the beginning. fffi is the model
output for each of the motion behaviour, bti is the classification
output (belief), at time t, for each model i = 1, 2 := (not
careful, careful). For real-time classification, the B vector is
read at each time step, and when one of the beliefs (bt1 or bt2)
reaches 1 (100%) the information is sent to the robot to update
its state depending on the HRI scenario in Section V.

The previous modelling approach (the deceleration phase
model) has some limitations. Foremost, it is focused on
the latter stage (the deceleration phase), resulting in a later
classification. The Belief System classifies the motion at the
beginning of the deceleration trajectory where the two DS
diverge. However, for handover data outside the trained region,
i.e. regions where the velocities are far greater than in the
dataset, the data can not be accurately compared with the two
DS. This new handover trajectory can occur outside the joint
distribution of both DS which would generate unpredictable
GMR outputs. One drawback of the second modelling ap-
proach (the acceleration phase model) relates to segmentation.
It is more challenging to extract the acceleration phase since it
involves identifying the precise moment of the pickup which,
due to sensor noise and occlusions during grasping, is prone to
errors. This problem does not occur in the deceleration phase,
making it simpler to extract from the dataset. As a workaround,
it was decided to add a low pass filter during training and
testing. This low-pass filter ignores the small velocities, which
mainly occur right after pickup and in the final stage of the
handover (which is not part of the second model). This solution
improves the classification accuracy without influencing the
real-world performance since the first samples that are ignored
by the low-pass filter are not informative enough to distinguish
the motion.

The models discussed in this section, the acceleration and
deceleration models, provide two possibilities of understand-
ing human cup manipulations in the presence of varying liquid
levels. The next section is reserved for analysing these two
models in great detail. It starts by comparing both models
on the dataset of Section II, it then evaluates the effect of
the ε parameter in the classification step, proceeding with

Carefulness Detection

Type of Cup Acceleration Model Deceleration Model

Train Test Predicted
Real Empty Full Empty Full

Red Cup Red Cup Not Careful 0.77 0.17 1 0.2
Careful 0.23 0.83 0 0.8

Champagne Champagne 0.4 0 0.82 0.27
0.6 1 0.18 0.73

Transparent Cup Transparent Cup 0.43 0.33 0.65 0.39
0.57 0.73 0.35 0.61

Wine Glass Wine Glass 0.57 0.23 0.5 0.43
0.43 0.77 0.5 0.57

TABLE I: Train set: 50% One cup; Test set: 50% Same cup.
Higher accuracy in the prediction is marked in bold

an in depth exploration of the novel model, the acceleration
phase. This involves studying the impact of different cup
materials and properties while testing for the other two datasets
(QMUL and IST datasets). These datasets will present unseen
challenges such as new cups, participants, and new data
acquisition techniques.

IV. EXPERIMENTAL RESULTS

A. Evaluation of both models

From the results in Table I the acceleration model is better
than the previous deceleration model and those conclusions
are present below. The evaluation metric was chosen as
the classification accuracy of each model when splitting the
dataset into types of cups. This means that careful accuracy is
how many transportations of full cups are considered careful
manipulations, and not careful accuracy is how many empty
cups are considered not careful manipulations. Table I shows
that the acceleration model is better at detecting handovers of
full cups as careful manipulations. This is desirable given the
challenging nature of transporting water in cups. Furthermore,
it can be concluded, from the model, that an empty cup does
not imply a not careful (careless) manipulation. Although the
deceleration model is better at detecting handovers of empty
cups as not careful manipulation it comes at a cost of not
detecting most full cups as careful. Since the HHI experiment
allowed participants to choose a preferable handover strategy,
an empty cup restricts the movement less than the same cup
filled with water (restriction on the orientation, oscillations,
velocity, etc). As a result, the empty cup handover should
reflect the user preference, either handover normally (not
careful), or restricted (careful), and assuming that the dataset
is a fair representation of both types of people, the empty cup
should not reflect any preferred carefulness motion.

B. Results for adaptation rate (ε) values

The ε is the hyperparameter present in the classifier. It is
a weighted parameter on the knowledge of past iterations.
Figure 4 shows that as ε increases the careful accuracy drops,
while the not careful accuracy increases. When increasing
the adaptation rate the system is sensitive to initial noise
and spurious data, it reaches a classification quicker (quicker
response time) which results in more incorrect decisions. The
not careful accuracy increasing as the ε rises are the result of
being influenced by initial spurious points in the trajectory.
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Fig. 4: The evolution of models accuracy and respective
response time of the prediction for each value of epsilon.

The region for the best accuracy models is the ε interval
between [0.05 - 0.2] (indicated in Figure 4 by the dotted
ellipse). This is a trade-off between a faster prediction time
and good accuracy. Inside this region, 75% or more of full
cups are classified as careful manipulations, and around 50%
of empty cups are not careful manipulation (which is ideal
given the personal preference choice when handling empty
cups).

C. Results on types of cups

Table II shows the results of the model’s accuracy for each
of the train and test splits. From Table II it can be concluded
that unknown full cups are predominantly classified as careful
manipulations irrespective of the type of cup the model is
trained on. While empty cups, regardless of the type of cups
trained on, give rise to a non-preferential manipulation.

Training on one plastic type and testing solely on the other
plastics give rise to the conclusion that training and testing
on the same cup material (such as plastics) achieves the best
results since it induces similar characteristics, e.g. risk of
breaking, friction, weight, etc. Training the model on glass
and testing on plastics it can be concluded that training a
model on glass and testing on plastics worsens the likelihood
of detecting full cups as careful manipulations. Although the
dataset only has one glass cup we hypothesize that this could
be induced by the risk of breaking, and the fact that glass is
heavier than plastic.

Further discussion allows to infer differences when com-
paring types of plastic cups. Soft plastics are deformable due
to their physical structure and material composition, thereby
are prone to deforming. This is exacerbated when are filled
to the top with a liquid. Rigid plastics are non-deformable as
they do not present the same structural flaws as soft plastic,
and are non-breakable, contrarily to glass which can break
and shatter easily. The model trained on soft plastics (red and
transparent cup) and tested on rigid plastics (champagne cup)
produce worse careful accuracy. We argue this is the cause of
deformability which makes it difficult to handle soft plastics
when filled with water compared to rigid plastics. The model

Acceleration Model

Type of Cup Training Set Testing Set

Train Test Predicted
Real Empty Full Empty Full

Red Cup Not Careful 0.688 0.15 0.46 0.1Transparent Cup Champagne Careful 0.312 0.85 0.54 0.90Wine Glass

Transparent Cup 0.5 0.1 0.53 0.15Champagne Red Cup 0.5 0.9 0.47 0.85Wine Glass

Transparent Cup 0.47 0 0.5 0.16Red Cup Champagne 0.53 1 0.5 0.84Wine Glass

Transparent Cup 0.5 0.25 0.59 0.17Wine Glass Red Cup 0.5 0.75 0.41 0.83Champagne

Transparent Cup 0.5 0.1 0.55 0.08Champagne 0.5 0.9 0.45 0.92Red Cup

Transparent Cup 0.47 0 0.5 0.09Red Cup 0.53 1 0.5 0.91Champagne

Red Cup 0.625 0.15 0.52 0.04Transparent Cup 0.375 0.85 0.48 0.96Champagne

TABLE II: One vs Rest Classification. Training set: 100% One
cup type; Testing set: 100% Other cup types. Plastic cups;
Glass cups

learned (intrinsically) the deformability feature in the full cup
case and since the testing set does not have cups with that
property, it became difficult to detect the full cup cases in
the test split. On the other hand, training a model on rigid
plastics and testing on soft plastics provide the highest level of
careful accuracy (with a bias to plastics only). The rigid plastic
is not affected by any of the latent features (deformability
or breakability), hence the model did not learn to be extra
sensitive. In the testing set, the deformability feature was
present (soft plastics only) and since the effect is mainly
present in full conditions, the model was capable of easily
distinguishing the two carefulness levels.

Our conclusion is that a model trained on soft (deformable)
plastics learns that full cup actions are extremely difficult,
hence these actions for Rigid plastics have a higher likelihood
to be classified as not careful since the rigid plastic is consid-
ered to be a cup with no inherent challenging properties. A
model trained on rigid plastics learns the opposite, considering
full cup actions for soft plastics as mostly classified as careful
manipulations.

D. Results of other datasets

In this subsection we extend the analysis of our model’s
performance to other datasets with new participants, cups,
sensor’s data, and overall new experimental scenarios to the
first dataset.

The second dataset used is the CORSMAL Containers
Manipulation dataset2 from the Queen Mary University of
London (QMUL). The participants performed a series of tasks
on a set of containers. The tasks involve pouring water, rice,
or pasta into containers such as cups or boxes, and initiating
a handover towards a robot. The dataset, referred to as the
QMUL dataset, includes four cameras, one attached to the
human, one attached to the robot, and two looking from each

2https://corsmal.eecs.qmul.ac.uk/containers manip.html
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side (top images in Figure 5 shows two frames of each external
cameras), and one microphone. The cup location is estimated
using a multi-view projective geometry which provides a 2D
centroid of the cup from the two side cameras at 30 Hz
sampling frequency [26].

The third dataset is the Human Manipulation of Cups with
Water3 from Instituto Superior Técnico (IST). It involves
participants in pairs interacting with cups where they both per-
form pick & place and handover actions. The dataset, referred
as the IST dataset, includes two head-mounted eye trackers
(bottom images in Figure 5), one on each participant, and
OptiTrack markers on the head and wrist of the participants to
record the motion (recorded at 120 Hz). All three datasets are
publicly available in their corresponding academia websites.
The first and third datasets were gathered by one or more
authors but not for the purpose of this work. None of the
authors were involved in the elaboration of the second dataset.

Fig. 5: Extracted frames of handover actions from the QMUL
dataset (top row) and the IST dataset (bottom row).

Table III shows the results for the three datasets: (i) the
EPFL-KIT, (ii) the QMUL, and (iii) the IST. The experiments
were accomplished by training the models using varying
percentages of dataset (i). The accuracy results of each model
indicate that it can identify most of the full cups handovers as
careful manipulations and corroborate the idea that handovers
of empty cups are dependent on human preference, and not
conditioned by cup properties. An interesting find is seeing
the not careful accuracy in the training set decreases when
trained on large datasets while the testing set accuracy for both
classifications remains fairly similar. This, we argue, is another
proof that for large datasets, the model that best generalizes
is the one that assumes that empty cups do not necessarily
invoke a not careful (natural) manipulation. The conclusion are
three fold: (i) the model generalizes well for unknown people
and cups, (ii) all 3 datasets show no preference for the empty
condition, and (iii) the Carefulness detection controller can

3https://vislab.isr.tecnico.ulisboa.pt/datasets and resources/#hcups water

Acceleration Model

Training Set Testing Set

Train Test Predicted
Real Empty Full Empty Full

EPFL 10% EPFL 90% Not Careful 0.83 0 0.53 0.19
Careful 0.17 1 0.47 0.81

EPFL 20% EPFL 80% 0.89 0.12 0.5 0.16
0.11 0.88 0.5 0.84

EPFL 30% EPFL 70% 0.69 0.09 0.51 0.15
0.31 0.91 0.15 0.85

EPFL 40% EPFL 60% 0.6 0.13 0.55 0.1
0.4 0.87 0.45 0.9

EPFL 50% EPFL 50% 0.61 0.16 0.5 0.1
0.39 0.84 0.5 0.9

EPFL 60% EPFL 40% 0.55 0.08 0.5 0.15
0.45 0.92 0.5 0.85

EPFL 10% QMUL Not Careful 1 0 0.5625 0.2
Careful 0 1 0.4375 0.8

EPFL 20% QMUL 0.92 0.14 0.5 0.2
0.08 0.86 0.5 0.8

EPFL 40% QMUL 0.94 0.18 0.5 0.13
0.06 0.82 0.5 0.87

EPFL 10% IST Not Careful 0.45 0.02 0.65 0.18
Careful 0.55 0.97 0.35 0.82

EPFL 20% IST 0.58 0.11 0.51 0.22
0.42 0.88 0.49 0.78

EPFL 40% IST 0.55 0.10 0.52 0.23
0.45 0.89 0.47 0.77

TABLE III: Top: Train set - sample of EPFL; Test set - rest
of EPFL dataset. Middle: Train set - sample of EPFL; Test set
- 100% QMUL dataset (new people and new cups). Bottom:
Train set - sample of EPFL; Test set - 100% IST dataset (new
people and transparent cup).

achieve good accuracy for either precise data points (MoCap
markers) and 3D point estimation (from stereo vision).

E. Conclusion

In terms of cup properties, the analysis can be summed
by Figure 6. It is known that glass is breakable while plastic
usually is not. Soft and hard plastic cups although are sharing
most of the properties, when filled with water the soft plastic
may deform due to the weight of the liquid inside. As a result,
soft plastics are characterized as deformable but not-breakable,
while hard plastics are not-deformable and not-breakable.

From the conclusions on Section IV-C, hard plastic cups are
the easiest to manipulate as they do not present a challenge
of breakability or deformability. The glass is not-deformable
but breakable hence it is more challenging to manipulate than
the hard plastic cups. Soft plastic cups are deformable but not-
breakable so are also more difficult than hard plastics. It is hard
to quantify which of the two challenges has a higher priority
when it comes to manipulation strategy. We could argue that
breaking a glass cup is worse and irreversible compared to
deforming a cup. However, in this situation, the deformability
only manifests when the cup is filled with water, hence it is
fair to conclude that a glass cup is the hardest to manipulate
and would influence the manipulation strategy the most.

V. HUMAN-ROBOT APPLICATIONS

In this section are detailed the HRI experiments performed
to evaluate the acceleration model. The Carefulness detection
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Fig. 6: An illustration scheme of the important features of
cups during manipulation: deformability, and breakability.
Deformability is present solely when filled with water, while
breakability is an inherent property of the cup.

controller is applied to recognize whether the human is being
careful with the object or careless (not careful). The robot
proceeds to pick the cups and, according to the observed
human manipulation, manipulate them differently and separate
the careful from the not careful cups. These HRI experiments
are three-fold: (i) pick-and-place, (ii) handover task, and (iii)
robot assistance. The robot platform used is the Kinova gen3
with a Robotiq gripper attached to the end-effector as seen
in Figure 7. The Kinova robot was controlled using the
kortex ros4 package for ROS and velocity commands were
used to control the end-effector in Cartesian coordinates at 40
Hz for linear (m/s) and angular (rad/s) velocities. For each
of the three HRI experiments, the objects are tracked by the
OptiTrack MoCap system which is streaming the data to ROS
at 120 Hz. The same velocity PI controller is used in all
experiments for the careful motion we lower the gain to have
the robot move slower (and cap the maximum velocity). The
model from Section III-B picked has the accuracy of Table
III in the EPFL 40%/60% train/test split case. The ε value is
picked inside the region mentioned in Section IV-B.

The control loop system presented in Figure 3 is a human-
in-the-loop controller running at 120 Hz during the human-
robot scenario. For simplification, the human hand position
and velocity are calculated as the cup’s or box’s which always
starts stationary either on the table or the floor, respectively.
The human-in-the-loop system begins predicting the human
manipulation the moment the cup has non-zero velocity. The
Belief System classification B then outputs to the robot
controller either not-careful (1) manipulation or careful (2)
manipulation. This result can then be applied to several HRI
scenarios. In the following subsections, we will address the
experiments performed and the overall evaluation.

4The official repository to interact with the Kinova robot
https://github.com/Kinovarobotics/ros kortex

TABLE IV: Results of Pick & Place and Handover experi-
ments.

Not Careful Careful

C
up

1 Empty 0.65 0.35
Full 0.10 0.9

C
up

2 Empty 0.6 0.4
Full 0.057 0.95

C
up

3 Empty 0.68 0.32
Full 0.22 0.78

C
up

4 Empty 0.55 0.45
Full 0.15 0.85

A. Human and Robot Pick and Place

The deceleration phase model used in the previous paper
[24] has this HRI experiment setup. The experiments begins
by the participant picking a cups from the table and placing
it in another location. The robot then proceeds to grasp the
same cup and move it to a third location depending on the
model’s output. In the not-careful manipulation option, the
robot transports the cup to a bottom shelf, without worrying
about any danger of spilling (tilting the cup). As for the careful
option, the robot transports the cup, keeping the orientation
fixed while slowing its velocity, and placing it on the top shelf.
Table IV shows the successfulness of the human-in-the-loop
system of adapting correctly to the present cup conditions.
A total of 4 subjects participated in the experiment and
manipulated 4 different cups (identified in Figure 6) with the
two conditions (empty and full of water). Two cups are from
the category of non-breakable and deformable properties (soft
plastics), and the other two are a rigid plastic cup and a glass
cup, respectively. Each participant manipulated the cup 10
times per cup and per condition. As a comparable variable,
the cup present in the previous paper [24] is also included in
the experiments as Cup 1.

B. Human-Robot Handover

The second scenario involves a human-robot handover of
cups where the robot tries to infer, from human motion,
whether the cup requires a careful manipulation or not. The
main difference to the previous scenario of Section V-A has
to do with the proactiveness of the robot that, instead of
waiting for the cup to be placed, it meets the human in
order to perform the handover. This, as mentioned before, is
one of the advantages of analysing the acceleration phase of
the motion with regards to the previous method in [24]. The
results are present in Table IV since no major changes to the
controller were implemented. The same subjects participated
in both experiments and manipulated the same cups for both
conditions. The classification results are calculated during the
acceleration phase hence there is no difference in waiting for
the object to be picked up or handed over.

It can be concluded from the pick & place scenario that
we reach good if not better results in detecting cups filled
with water as careful manipulations. When comparing the
results from the previous deceleration model, the Cup 1 results
match the ones observed in the previous work validating both
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Fig. 7: Each row of images illustrate the three HRI scenarios where the Carefulness detection controller using the acceleration
model is applied. The first row is the human-robot handover, the second row is the human-robot pick & place of cups, and
the third row is the robot assistance to a human carrying a heavy box. In the third application setup the human was lifting the
box at the right side of the robot to prevent occlusions of the box’s markers.

TABLE V: Results for Robot Assistance experiments.

Easy Hard

B
ox Light 0.78 0.22

Heavy 0.12 0.88

models as good detection mechanisms for human manipulation
during pick & place tasks. However, these results also extend
to other HRI applications such as handovers and given the
architecture of the model the results achieve the same accuracy
for both applications. To note, that due to the risk of spilling
water, the participants’ trials ran in real-time but without robot
participation. The Carefulness detection controller did output
the commands to the robot and Figure 7 illustrates how the
robot interacts in each scenario in a careful and not careful
situation. The supplementary video shows clearly the different
robot responses for each scenario.

C. Robot Assistance

In the last scenario, the context is changed. On a different
note, we decided to move away from the realm of cups
and carefulness manipulation detection and aim for another
potential use case. The recognition of different manipulation
strategies can also be applied to household activities such as
lifting boxes, furniture, appliances, etc. The human is carrying
a large box and the robot has to infer if the human requires
assistance in lifting the box due to being too heavy. The robot
if it detects that the human is struggling to transport the box
it would grasp onto the side handle of the box and pull, in
order to assist the person in placing the box on the table. If,
on the contrary, the human does not exhibit any challenge

in lifting and transporting the box, it would not interact and
leave the human unassisted. Table V shows the results for
detecting whether the human was having trouble lifting the
box given the human’s motion behaviour. This final experiment
shows that it is possible to detect, fairly accurately, when a
human is having difficulty in moving a large or heavy object by
simply observing the motion pattern of the item being moved.
Although light objects, similarly to empty cups, do not reflect
one particular strategy, which once again we argue is indicative
of human preference.

VI. CONCLUSION

We have studied the human hand motion during handovers
of cups in two conditions: carrying an empty cup, or a
cup filled with water. These experiments explored several
datasets with data acquired from different sensors during
handovers between two humans, or handovers simulated by
a single person. Each dataset had different types of cups with
different materials, and several participants manipulated each
cup multiple times, in the two conditions mentioned above.
We believe our results provide a broad and overall general
analysis of the human motion behaviour during handovers of
cups in two relevant conditions (an empty vs a full water cup).
From these two conditions, we were able to detect a distin-
guishable motion strategy from humans when manipulating
cups filled with water. This is a more secure, risk-free, option
of moving objects when there is an apparent risk of spilling
or danger compared to a normal handover between humans.
Based on these findings, we developed a computational model
describing careful/careless handovers, learned from human-
to-human handover motion data. This computational model
provides the robot with anticipatory knowledge of the type
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of manipulation, careful or not careful, thus facilitating the
robot’s motor preparation and the adaptation, prior to the
interaction, allowing for a better understanding of the object
inherent properties. We provide a link to a video that shows
examples of the HRI scenarios working in real-time, the
operation of the controller and the online classification of the
action’s carefulness - video.PropertiesCupsHRI.ieee-2022.

The overall conclusions from the HRI experiments are that
the acceleration model clearly shows its advantages over the
previous model with its multi-use in different robot applica-
tions. While the previous one had been only applied to pick
& place due to its limitation of having to set the final meeting
point, this new model gives information the moment the object
(cup or box) is picked by the human, making it versatile. As
it was mentioned in the introduction, this model can be useful
for many robot situations where humans play a vital role. As
future work we intend to study the impact of the carefulness
on the robot execution, if participants appreciate more this
approach or not and whether the robot spills more or less
water. Robots can learn a lot from humans and should take
advantage of how humans tackle problems to better understand
the world surrounding them. As a result, this robot controller
aims to enhance the robot capabilities in understanding object
properties from human manipulations.
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