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Abstract—When humans interact with each other, eye gaze
movements have to support motor control as well as communi-
cation. On the one hand, we need to fixate the task goal to retrieve
visual information required for safe and precise action-execution.
On the other hand, gaze movements fulfil the purpose of com-
munication, both for reading the intention of our interaction
partners, as well as to signal our action intentions to others. We
study this Gaze Dialogue between two participants working on
a collaborative task involving two types of actions: 1) individual
action and 2) action-in-interaction. We recorded the eye-gaze data
of both participants during the interaction sessions in order to
build a computational model, the Gaze Dialogue, encoding the
interplay of the eye movements during the dyadic interaction.
The model also captures the correlation between the different
gaze fixation points and the nature of the action. This knowledge
is used to infer the type of action performed by an individual.
We validated the model against the recorded eye-gaze behavior
of one subject, taking the eye-gaze behavior of the other subject
as the input. Finally, we used the model to design a humanoid
robot controller that provides interpersonal gaze coordination in
human–robot interaction scenarios. During the interaction, the
robot is able to: 1) adequately infer the human action from gaze
cues; 2) adjust its gaze fixation according to the human eye-gaze
behavior; and 3) signal nonverbal cues that correlate with the
robot’s own action intentions.
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I. INTRODUCTION

HUMANS can routinely engage in joint actions, and coor-
dinate their movements with others in very sophisticated

manners. Such interactions occur in situations as diverse as
cooking, cleaning, assembling complex structures, carrying
heavy loads, or performing team sports. There is a con-
tinuous adaptation between the interaction partners to each
other’s actions, in closed loop. These tasks involve a collab-
orative process to coordinate attention, communication, and
actions to achieve a common goal [1]. During this process,
humans observe the behavior of their partners to anticipate
their actions, and to plan their own actions accordingly. As
the humans’ neural mechanisms of motor preparation are rel-
atively slow, prediction allows to significantly accelerate the
dynamics of our reactions [2]. This is fundamental to enhance
coordination in humans and in human–robot interactions
(HRIs).

The perception of eye gaze movements is particularly
important for action coordination [3] and to anticipate the
intentions of others [4]. When working on a collaborative task,
the human eye gaze alternates between looking at each other’s
eyes, seeking the confirmation and engagement of the counter-
part, and fixating the goal position before and during reaching
actions [5]. Sebanz and Knoblich [6] reported that the ability
to gaze at the right location in a timely manner substantially
enhances coordination with other individuals. In infant–parent
relationship, the eye-gaze communication works as a tool to
study the infant’s development [7], [8].

In this article, we study what we call the Gaze Dialogue
between two people working on a joint task (Fig. 1), involving
a sequence of actions where each person is either a leader or a
follower. After one action is completed, the roles are changed,
that is, the leader becomes a follower, and vice-versa. The pro-
cess is repeated until the entire task is finished. We consider
two types of actions: 1) individual action, placing an object,
and 2) action-in-interaction [9], giving an object to some-
one. After the experiments, we analyze the eye-gaze of each
pair of participants (Section III and the Gaze Dialogue Model
learns the interdependency/coordination between the leader’s
and follower’s eye-gaze movements (Section IV).

2168-2267 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 06,2023 at 16:39:32 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8818-2739
https://orcid.org/0000-0002-1396-6774
https://orcid.org/0000-0002-3800-7756
https://orcid.org/0000-0002-7076-8010
https://orcid.org/0000-0002-9036-1728


2 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 1. Two humans are performing a task of assembling two towers, without
any verbal communication. The experiment requires them to execute individ-
ual actions, pick and place that is, placing, or handover, that is, giving. On the
bottom image, a human is performing the same task as before, but interacting
with a robot with human-like behavior.

The Gaze Dialogue Model combines two key functionali-
ties: 1) predicting the gaze fixations of others and planning
one’s own fixations and 2) using the gaze fixations to predict
the actions of others and to plan/generate one’s own actions.
The performance of the Gaze Dialogue Model is initially
assessed by comparing the model results against the data
acquired in human–human interaction (HHI) experiments. We
use the fixations and actions performed by one of the subjects
in the HHI as the model input, in order to predict the fixations
and actions of the other human in the interaction. In the next
step of performance validation, we implement the model in
a humanoid robot controller, which drives the robot eye fixa-
tions, during the HRI experiments (Section V). The robot con-
troller, based on the Gaze Dialogue Model, takes the human
gaze fixations as the input to predict the human next gaze fix-
ations and actions, while at the same time, generating its own
appropriate gaze fixations and planning its own actions. The
results show the robot successfully identifying the actions of
the human partner, and acting in a manner that is consistent
with the HHI scenario. The behavior of the robot is described
quantitatively and it can be visualized in the supplementary
material in Section V-C. Finally, in Section VI, we draw some
conclusions and establish directions for future work.

II. STATE OF THE ART

Gaze behavior has drawn substantial research interest for
over 30 years in order to fathom the intricacies of interaction
of living things [10]. In the last decade, the research efforts
have been directed to HRI and how it can improve robot’s
inclusion in modern societies.

Yäcel et al. [11] described a joint attention model between
a robot and a human, by analyzing the human’s head pose.
The authors mentioned that head orientation was easier to
track and to estimate, and that the analysis of the experi-
menter’s eyes would require stable and high-resolution image

acquisition, with a prohibitive computational cost. To detect
human deceptiveness, Yu et al. [12] analyzed the head orien-
tation, facial expressions, to study how people tend to synchro-
nize nonverbal cues during the interaction. Instead, we use the
eye-gaze motion instead of head movements alone, because
eye-gaze has been shown to generate more accurate results
in terms of gaze synchronization during interaction [13], [14].
Ivaldi et al. [15] developed a controller for the humanoid robot
iCub that “reads” the head orientation to understand which
object is being fixated by a human. This was achieved with
an external RGB-depth camera, but the controller was lim-
ited to detecting colored objects only. The main drawback
of these approaches is that head orientation is taken as an
approximation to the actual eye-gaze fixations. For a better
interaction experience, the robot should detect the interaction
partner, and use eye contact to coordinate its actions with the
human counterpart. Chadalavada et al. [16] utilized the head-
mounted eye-tracker data to analyze trajectories and eye-gaze
patterns in a scenario where humans have to navigate around
robots. The robot projects the directional movement intention
and from eye-gaze data it is possible to quantify which projec-
tion approach is most effective. Notwithstanding, none of these
approaches use eye-gaze data for action recognition and gen-
eration. Instead, we apply, in real-time, the human eye-tracker
information to interact with a robot in an HRI setup.

Some approaches were capable of using the full potential
of the human eye analysis in HRI scenarios. Pereira et al. [17]
studied gaze to measure if the robot is socially present, that is,
if the robot is looking at the task or the person. Humans clas-
sifying a robot as socially present improves overall likeness
and perceived intelligence. Similarly, Kompatsiari et al. [18]
evaluated the impact of humanoid robots eye-contact with
humans in an HRI and showed that it also improves social-
ness and quality of interaction. However, other works [19]
concluded that fixating an object of shared attention rather
than gazing at the robotic partner, is the most meaningful
prediction of engagement. Palinko et al. [20] worked on the
detection of facial features, such as the pupil position in the
eye, that were used to estimate the direction of the human
eye gaze. Their approach used the robot RGB cameras, and
did not require any extra sensors to detect the human gaze
direction. Unfortunately, the cameras suffered from poor reso-
lution, sensitivity to varying light conditions, and was limited
to distinguish left and right orientation of human eye-gaze
fixations. Domhof et al. [21] integrated eye-gaze estimates,
extracted with eye tracking systems, in a robot controller to
understand the fixation point of humans. The fixation point
was calculated either from the eye tracker or from pointing
gestures to relevant objects. This information was provided to
a robot controller and, using the robot’s RGB-depth camera,
it was possible to distinguish the object that the human was
aiming at. Currently, the research using eye-trackers are lim-
ited to understanding if a person is fixating at an object or
not [22], [23]. In [24], we implemented human-inspired eye-
gaze cues on robots to achieve human-level legibility of robot
actions. In this work, we use eye-tracking data to study the
joint attention between two humans, by analyzing the contex-
tual gaze information extracted from a dataset combining two
eye trackers for an HHI scenario [25].
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Andrist et al. [26] focused on bidirectional gaze interaction
between a human and a virtual agent in a sandwich-making
task. This interaction was modeled with an HHI experiment
and it demonstrated how gaze nonverbal cues can lead to a
faster completion time of the task and reduce the error rate.
Notwithstanding, one of the limitations was the fact that the
experiments were only applied to the “instructor role,” that in
this article we designate as the “leader” perspective. In our
work, we study not only the behavior of the participant who
is performing the actions but also of the participant who is
observing or interacting.

There are recent works using gaze shift behavior that stud-
ied the impact of the leading participants’ attention [27], as
well as head mounted eye-tracking which studied the human
gaze focus in virtual environments [28]. The focus of our
experiments will involve the latter techniques for detecting
human behavior in social interactions. Lukic et al. [29] studied
the individual actions performed by humans during pick-and-
place operations. The motion of the hand, arm, head, and eyes
was tracked when a person moved an object from point A
to point B. The data was used to model the inner coupling
between the different human body part movements. The indi-
vidual actions of Lukic et al. [29] are similar to the placing
actions in this article. The gaze behavior provided a reference
signal to the visual servoing module, by shifting from one goal
position (initial location of the object), to the final position
(final destination of the object). Schydlo et al. [14] developed a
learning-based action anticipation model based on motion and
gaze fixation data. It showed that it can improve the prediction
time of actions by introducing human gaze behavior. In this
work, we want to predict the action while it is being per-
formed in real time. In addition, instead of relying on raw pixel
information, by contrast, our approach identifies the contex-
tual information, that is, the object of interest we are looking
at, the face of the other subject, etc. In addition, in this work,
we model a Gaze Dialogue which predicts the actions from
the perspective of both parties involved in the interaction.

Previous datasets such as the ones used in [14], [24],
and [30] only provide the gaze behavior from the perspec-
tive of the subject performing the actions (actor). Instead, the
dataset [25] used in this work encompasses human gaze behav-
ior in a dyadic interaction scenario from two perspectives:
1) the perspective of the subject leading the action (leader)
and 2) the subject who is observing/interacting with the first
subject (follower). The dataset in [31] provides human eye-
tracker and skeleton motion data in a scenario performing
complex tasks such as cleaning a table with multiple objects.
Ondras et al. [30] gathered a dataset of audio samples from
human speech and motion from the head, hand, and torso.
It looked into the nonverbal communication of humans during
speech and applied it to a humanoid robot for more expressive
and relatable robots. The network would output the appropri-
ate joint angles for the robot to perform similar nonverbal
cues. The authors argue that robots should exhibit human-like
motion behavior while having dialogues with humans. Our
dataset overcomes several limisierrantations of past datasets
by including full-body motion and gaze data in manipulation
tasks set in 3-D world spaces. However, our work extends [24]
by introducing a second agent as well as interactive actions

such as handovers between subjects. Hence, we believe that,
although we do not provide full-body motion, the dataset
includes the most meaningful dimensions in human behav-
ior: eye-gaze, head orientation, and arm motion of two people
at the same time.

The contribution of this work is to build a model of the
eye-gaze communication system that can: 1) predict the gaze
behavior and actions of the person we are interacting with and
2) generate our eye-gaze fixations as well as plan the action
we will perform. For this purpose, the next section proceeds
to analyze the eye-gaze measurements from two humans while
they interact with each other.

III. HUMAN–HUMAN INTERACTION EXPERIMENT

The objective of this experiment is to study the human eye-
gaze in its functional and communicational role in the context
of interaction and action execution. In order to acquire the
data necessary to build the Gaze Dialogue model, we designed
an HHI experiment and recorded the eye-gaze data of two
actors working on a collaborative task.1 The experimental
setup and the data acquisition procedure are detailed in the
dataset paper [25], and only a brief description is provided
here.

A. HHI Experiment Description

The experiment consists of a dyadic interaction task for
assembling two towers from a stack of three objects placed
next to each participant (top image of Fig. 1). The description
of the task and the stack of objects are occluded from the other
participant at the beginning of each round. In order to complete
the task, the actors are required to perform a series of simple
actions. For every action, each actor is either a leader or a
follower, and these roles alternate for the subsequent actions.
When the task starts, the leader picks the first object from the
stack. If the object is a match for his/her tower, the leader
will place it, while the follower only observes the action. In
the case the object is for the other tower, the leader gives the
object to the follower who will place it on his/her tower.

There are two types of actions the actors execute: 1) plac-
ing an object or 2) handing over, that is, giving, an object. In
social psychology, these two actions elicit two different behav-
iors: 1) offline social cognition where the follower observes,
and the leader receives no information from the follower and
2) online social cognition where only the follower adapts to
the leader [32]. These behaviors are addressed in this article
in the context of a human–robot scenario.

Once the towers are assembled, the task is updated, and a
new round with new instructions for each participant starts.
There is a total of four rounds, that is, each actor in a dyad
assembles four different towers. The towers configuration and
associated actions alternate each round, in order to prevent
the participants from anticipating movements based on the
previous experience.

1The dataset can be found in the following public repository:
http://vislab.isr.tecnico.ulisboa.pt/datasets/#acticipate. More details about the
dataset (e.g., data collection and motion capturing) are available upon contact
via nferreiraduarte@isr.tecnico.ulisboa.pt.
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B. Data Acquisition Setup and Dataset

To capture their eye movements, both participants wore a
Pupil-Labs binocular gaze tracker [33]. The Pupil Labs binocu-
lar gaze tracking glasses are equipped with three cameras. Two
infrared cameras record at 120 Hz and the third RGB camera
provides a video stream of the egocentric view at 60 Hz. The
movement of participants’ head and arm were recorded using
the Optitrack motion tracking system, running at 120 Hz. To
record head gaze, we attached five reflective markers on each
eye-tracking glasses. Each group of five markers define one
rigid body transformation, whose position and orientation in
the reference frame are recorded.

The lab streaming layer (LSL) [34] library is used to syn-
chronously capture the data from sensors (motion capture and
two eye-trackers) of each dyad. For LSL, we developed a
Motive2LSL application that captures the broadcasted loca-
tion of the markers and rigid bodies in the Motive software
as well as the application that receives the data measurements
from the two Pupil-Labs glasses.

C. Labeling and Analysis of Acquired Data

The described HHI experiment was repeated with three
dyads, that is, six participants2 (five males and one female,
22–45 years old, a mixture of academic undergraduates, grad-
uates and staff employees, most unfamiliar with robots). All
participants were naive to the objective of the experiment.
Assembling one tower requires three actions, and each par-
ticipant built four towers. Thus, the recordings include three
actions for four towers for six participants, as a leader (i.e., 72
actions), and an equal number of actions as a follower. The
recordings are paired, that is, each action is observed from
both the leader’s and the follower’s perspectives.

The gaze fixations, illustrated in Fig. 10, are estimated and
provided by the official software of the Pupil Labs gaze
tracker. Each gaze fixation detected for each action counts as
one frame of the video stream of the egocentric view (60 Hz).
After data collection, it is visually inspected by an expert, in
order to define the regions-of-interest, that is, the most fre-
quent gaze fixations in the vicinity of meaningful “things” in
the experiment. For a leader, the following fixations are con-
sidered: brick (B), follower’s face (FF), follower’s hand (FH),
leader’s own hand (LOH), follower’s tower (FT), and leader’s
own tower (LOT). The fixations defined for a follower are:
leader’s face (LF), leader’s hand (LH), leader’s tower (LT),
and follower’s own tower (FOT). Gaze fixations which landed
outside the previously mentioned regions-of-interest count,
representing less than 1% of the total dataset, were consid-
ered as outliers and discarded in the analysis. Finally, these
regions-of-interest are used to manually label both the leader’s
and follower’s eye-gaze fixations. Table I shows one example
of the leader’s gaze fixation labeling process for a giving and
a placing action.

2The ACTICIPATE studies do not include frail subjects and the subjects are
recruited within the academic population at IST. All subjects are informed,
adult, healthy young individuals, and there is absolutely no invasiveness in
the tests.

TABLE I
EXAMPLES OF LEADER’S GAZE BEHAVIOR FOR EACH ACTION WITH

TOTAL DURATION IN VIDEO FRAMES FOR EACH REGION OF INTEREST

Fig. 2. Analysis of gaze fixations during HHI experiment. (a) Duration of
gaze fixation for different regions of interest per action. (b) Number of gaze
fixations of different regions of interest per action. TM stands for Team-mate.

Besides the gaze fixations, the significant events of an action
are also annotated: “action start,” “object picked,” “object
handed over” (only exists for the giving action), “object
placed,” and “end of action.” Fig. 2 shows the average duration
of gaze fixations toward different regions of interest across 72
actions for both types of actions, and in the plot below, it shows
an average number of gaze fixations for identified regions of
interest.

From Fig. 2, we can conclude that for the giving action, the
leader has multiple gaze fixations, and the gaze fixation time
is longer compared to the placing action. In the placing action,
instead, the leader focuses mainly on his/her tower, whereas
for the giving action, the leader switches several times between
FF, hand and tower, and fixates those regions of interest for a
significant amount of time. The leader fixates the brick evenly
in the two actions.

The follower’s regions of interest are different from the
leader, that is, the brick does not exist, and looking at his/her
hand after the brick is handed over was negligible. The fol-
lower’s gaze fixation behavior is comparable between the
giving and placing actions while there is a significant dif-
ference for the leader’s gaze fixations. This is due to the
follower’s attempt to understand the leader’s action. As a
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Fig. 3. Fixation probabilities of leader’s gaze for giving (top figure) and
placing (bottom figure) action.

Fig. 4. Fixation probabilities of follower’s gaze for giving (top figure) and
placing (bottom figure) action.

result, we see the follower spend a significant amount of
time fixating the LF and/or hand presumably attempting to
“read” the action. The main difference is the number and dura-
tion of gaze fixations between the leader’s and his/her tower.
This occurs when the follower is aware of the action, fixating
the goal, that is, either his/her tower, for visually controlling
the giving action, or the LT, monitoring the execution of the
placing action.

Fig. 3 shows the computed probabilities of the leader’s gaze
fixations over time, for both giving and placing actions, aver-
aged for all actions in the dataset. The (empirical) probability
was estimated by calculating the relative frequency of each
gaze fixation over time, after normalizing the time-duration of
all actions. In giving, the leader starts by fixating the brick
then successively fixates the FH, the FT and, finally, the face.
In placing, the leader fixates the brick first, and then his/her
own tower, almost until the end of the action. Fig. 4 shows
the follower’s gaze fixations when observing the leader per-
forming either a placing or a giving actions. The most notable
fixations are TM Hand, and My Tower, which are predomi-
nant during a giving action. These occur when the goal of the
follower is to grasp the object from the LH and to place it on
his/her tower. At the beginning, until about 50% of the total

time, the most probable fixation is TM Face, which indicates
that the follower is trying to decode the leader’s action inten-
tion. Given that in a placing action, the follower is not active,
there is not one, but several probable fixations, reflecting a
more passive role. Although at the end of the action, the fol-
lower fixates the LT (TM Tower) when it becomes clear that
it is a placing action.

The main conclusions from this analysis are four-fold.
1) It is possible to predict the leader’s action from the gaze

fixations.
2) There is a clear distinction between the leader and the

follower’s gaze fixations (Figs. 3 and 4).
3) From the leader’s perspective, there is a considerable

focus on the brick, which is negligible in the fol-
lower’s case. The difference may be justified by the
roles of each subject in the experiments, the leader
needs to manipulate the brick to complete the action,
whereas the follower only needs to follow the leader’s
behavior.

4) The follower’s gaze fixations were similar for both
actions. This was not the case with the leader. The
explanation may be related to the distinct nature of
each action: an action-in-interaction (handover) requires
communicating the intent; instead, an individual-action
(placing a brick on the tower) does not.

Concerning the follower, the nature of the action is ini-
tially unknown, the behavior is similar for both actions until
the moment when the action intention is understood. Once
the follower decodes the action, the gaze behavior changes
accordingly, which may justify the slight change in the tower
fixations for the two actions. In the next section, we will
present the model that learns from the gaze fixations to predict
the leader’s actions.

IV. GAZE DIALOGUE MODEL

The Gaze Dialogue Model integrates the eye-gaze commu-
nication that occurs during an interaction between two humans,
with the arm-motor actions which result from the interaction.
We start with a general model that represents each human as
a separate system, with eye-gaze and arm-motor movements,
together with the interpersonal links of nonverbal communi-
cation. The eye-gaze is used for predicting the fixations of
others while, at the same time, generating one’s fixations.
Understanding the gaze fixations, we can infer the associ-
ated actions. The arm-motor cues represent the action of each
actor. It predicts the actions of others, while, at the same
time, it plans one’s actions, generating the appropriate motor
commands to complete the action.

The proposed Gaze Dialogue Model block diagram is shown
in Fig. 5. The states are defined as the gaze fixation Sk and
type of action Ak, for each actor, at time instant k. The model
is composed of the Gaze Fixation system, identified by the
blue blocks, and the Action Anticipation system, the yellow
blocks. The Gaze Fixation system is responsible for predicting
the fixations of others, and generating one’s own fixations. The
role of the Action Anticipation system is to predict the actions
of others, and to plan one’s own action.
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Fig. 5. Block diagram of the proposed general Gaze Dialogue model.

The Gaze Dialogue Model uses the history of a person’s
gaze fixations and actions, together with the observations Ok

of the gaze fixations of the other person. The Gaze Fixation
system predicts the gaze fixation of the other person at time
k+1, while the Action Anticipation system predicts the type of
action performed by the second person. The predictions of the
fixations and actions, together with one’s fixations and actions,
are eventually fed back to the Planning/Control system, iden-
tified by the purple block. This block is responsible for the
person’s next gaze fixation and which action to perform.

The choice of hidden Markov models (HMMs) as a
modeling tool is primarily due to its low complexity and mod-
est data requirements compared to other highly complex, data
hungry models, as deep neural networks. Acquiring synchro-
nized human eye-gaze data is costly and HMMs proved that
we can use small amounts of data to predict the eye-gaze
movements and actions of others and generate one’s own eye-
gaze movements and actions. Finally, the HMM allows us to
naturally incorporate the interdependencies between concern-
ing human motor control units, such as eye-gaze, head and
arm movements, and can run in real-time for HRI.

The general approach of the Gaze Dialogue Model, for
the Gaze Fixation System, is described in Section IV-A and
Section IV-B describes the Action Anticipation system.

A. Gaze Fixations

We have modeled the Gaze Dialogue with an HMM,
where each actor has an associated internal state variable:
Sk ∈ {

U1, . . . , UN
}

where U1, . . . , UN are the admissible
state values, that is, fixations, and k ∈ {

1, . . . , T
}

denotes
the discrete-time instants. The actor has access to an instanta-
neous observation: Ok ∈ {

V1, . . . , VM
}

where V1, . . . , VM are
the fixations of the other actor. The two sequences (state and
observation)

S = (
S1, . . . , ST

)
, O = (

O1, . . . , OT
)

are represented by the HMM λ = (π, C, D) where π denotes
the probability distribution of the state variable at time k = 1,
C = (

ci,j
)

denotes the transition matrix, and D = (
di,j

)
denotes

the emission matrix [35]. Since we consider two actors,
denoted by P1 and P2, the above sequences are duplicated

S1
k ∈ {

U1
1, . . . , U1

N

}
O1

k ∈ {
V1

1 , . . . , V1
M

}

S2
k ∈ {

U2
1, . . . , U2

N

}
O2

k ∈ {
V2

1 , . . . , V2
M

}

and two different HMMs are used to generate the state and
observation sequences for each actor: λ1 = (

π1, C1, D1
)

and
λ2 = (

π2, C2, D2
)
. The joint probabilities of the state and

observation sequences for the two actors are

P
(

S1, O1
)

=
T∏

k=1

c1
S1

k−1,S
1
k
· d1

S1
k

(
O1

k

)

P
(

S2, O2
)

=
T∏

k=1

c2
S2

k−1,S
2
k
· d2

S2
k

(
O2

k

)
.

In the perspective of actor P1, we predict the fixation at time
k+1 of P2, Ŝ2

k+1, and generate his/her own next fixation, S
′1
k+1.

In the perspective of P2, it predicts the fixation of P1, Ŝ1
k+1,

and generates the next fixation, S
′2
k+1, of P1.

B. Action Anticipation System

The Action Anticipation System has the twin-goal of
predicting the actions of others and planning one’s own
actions, based on the gaze fixations of the actors. In order
for actor j ∈ {1, 2} to predict the action Âi

k+1 of another actor,
i �= j, we combine the information related to the observed
gaze fixations Ŝi

k+1. Based on the current gaze fixation of the
other actor, we use the action probabilities from Table IV, to
update an exponential moving average

Pi
a(k + 1) = (1 − α)Pi

a(k) + αδ(k) (1)

where k refers to time, and α is a constant smoothing factor.
δ(k) is the probability Pi

a(k) of action a occurring when actor i
is looking at gaze fixation Si

k at time k. Pi
a is the probability of

actor i performing action a. During the interaction, the Gaze
Dialogue Model predicts the actions of others, and allows one
to plan our own actions. The predicted action Âi

k+1 of actor
i is updated for every new gaze fixations Ŝi

k+1 the actor i is
gazing for each time k+1. At the same time k+1, the Action
Anticipation System allows the planning of the action A

′j
k+1

associated to actor j. The exponential moving-average mech-
anism ensures a smooth evolution of the action probabilities,
and filters out spurious noisy measurements.

C. Gaze Fixations for the Leader–Follower Interaction

We then adapt the Gaze Dialogue Model to the leader-
follower relation that is extracted from the experimental data.
The HHI Gaze Dialogue Model contains both the eye-gaze
communication and the arm movements, as in the general
model, with the difference that the leader’s action is predefined
(instruction), and the purpose of the follower is to under-
stand the action, giving or placing, and act accordingly. Fig. 6
shows the block diagram of the model with a few modifi-
cations to reflect the leader–follower experiments from our
scenario. From Gallotti et al. [32] in a leader–follower sce-
nario, the leader leads the action, while the follower adapts its
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Fig. 6. Block diagram of the leader–follower Gaze Dialogue model.

behavior to match the leader’s intention. As such, in the Gaze
Dialogue model, the leader’s block system is not in closed-
loop, since the leader is not influenced by the follower. Since
the action is instructed to the leader, the leader has to gener-
ate his/her own gaze fixations and action, without having to
predict the interaction partner’s gaze fixations or actions. On
the other hand, the follower “reads” the leader’s nonverbal cues
(arm movements and gaze fixations) to infer the leader’s action
and, consequently, prepare his/her own action and provide the
appropriate nonverbal cues.

The state and observation values match the labeled and
leader/follower pair gaze fixations described in Section III. The
leader has six different states, and the follower has four. For the
leader/follower pair, we denote the states of, respectively, by
SL and SF . The states and observations of the leader–follower

SL
k ∈ {

UL
1 , . . . , UL

N

}
OL

k ∈ {
VL

1 , . . . , VL
M

}

SF
k ∈ {

UF
1 , . . . , UF

N

}
OF

k ∈ {
VF

1 , . . . , VF
M

}

the HMMs for the leader–follower relation has the following
parameters, λL = (πL, CL, DL), and λF = (πF, CF, DF).

For the leader–follower relation of the HHI experiments,
the state and observation sequences are related, as the state of
the leader becomes the observation of the follower, and vice-
versa: SF = OL and SL = OF . We can therefore define
two sequences S = (

S1, . . . , ST
)

and O = (
O1, . . . , OT

)
and

the leader has state sequence S and observation sequence O,
while the follower has the opposite. The probabilistic models
are

P(S, O) =
T∏

k=1

cL
Sk−1,Sk

· dL
Sk

(Ok)

P(O, S) =
T∏

k=1

cF
Ok−1,Ok

· dF
Ok

(Sk)

with different C and D matrices. The two HMMs are learned
from the giving and placing actions data, and the obtained
transition and emission matrices are given in Table II. In the
Leader’s perspective, the transition matrices size are 6×6, for

the six states (B, FF, FH, LOH, FT, and LOT mentioned in
Section III-C), and the emission matrices are 6×4, from the
six leader’s states to the follower’s states (LF, LH, LT, and
FOT). To note that FH and LH is the same as TM Hand in
the perspective of the follower and leader, respectively. In the
follower’s perspective, there are only four states (LF, LH, LT,
and LH); hence, the sizes are 4×4 and 4×6 for the transition
and emission matrices, respectively.

There are four HMMs in total in the Gaze Dialogue Model,
one for each person (leader versus follower) and for each
action (placing versus giving). The HMMs are used by the
leader to predict the follower’s next state ŜF

k+1 and, con-
versely, by the follower to predict the leader’s next state,
ŜL

k+1. More important, by using posterior decoding, the fol-
lower can plan its next fixation S′F

k+1 in response to the
leader’s behavior. To measure the effectiveness of the gaze fix-
ations’ generated by the Gaze Dialogue model, we compare
the generated follower’s fixations against the real follower’s
fixations. These experiments involve, for each HHI dataset
leader’s input, to generate the follower’s gaze fixations’ output,
and then compare to the real corresponding HHI follower’s
response. The accuracy is 67% ± 24% for the giving action,
and 64% ± 24% for the placing action (1/6 for chance level).
We can conclude from the accuracy results, which reflect the
average and standard deviation for the HHI dataset, that the
model is capable of generating a common follower’s reac-
tion taking into account the nondeterministic behavior during
a leader–follower interaction. It is important to mention that
the Gaze Dialogue model is not trying to mimic an exact
leader–follower match for every possible variation.

Fig. 7 shows the leader–follower gaze fixations and the
generated follower’s fixations for placing and giving action
sequences. The model takes the leader’s gaze fixations (blue
line on Fig. 7 top plot) as the input and estimates the predicted
behavior of the follower using the posterior state probabilities
(shown by the middle plot). The predicted gaze fixations of
the follower (red line in Fig. 7 bottom plot) are the gaze fix-
ations with the highest probability at each time instate. The
follower’s predicted gaze fixations are compared against the
instance of the actual (recorded) gaze fixations (blue line in
Fig. 7 bottom plot).

When analyzing the percentages of each gaze fixation for
every action, in Table III, shows that the most common gaze
fixations for each action are consistent with the behavior
presented in Fig. 4. Although the recorded follower’s gaze fix-
ations for a single instance/specific action may differ from the
predicted (probabilistic) gaze fixations, nonetheless, most of
the time, the predictions match the observed fixations. The
gaze fixations generated for the follower when performing a
giving action are exactly the ones identified as the most fix-
ated in the HHI dataset: 1) fixating the LF; 2) fixating the LH
(both for decoding the human intention and for following the
human arm trajectory); and 3) his/her own tower for placing
the object and conclude the action. As for the placing action,
the face of the leader is the most dominant, as shown in Fig. 4,
followed by the LT which is when the leader is finalizing the
placing action.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 06,2023 at 16:39:32 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON CYBERNETICS

TABLE II
HMM PARAMETERS FOR THE LEADER (L) AND FOLLOWER (F) DEFINED BY TRANSITION MATRIX C

AND EMISSION MATRIX D FOR (G)iving AND (P)lacing ACTIONS

Fig. 7. Simulations of leader’s and follower’s internal model in the case when the leader’s behavior during a giving action (left) and placing action (right).
The top plot shows the leader’s recorded gaze fixations, the middle plot the follower’s fixation probabilities, and the bottom shows the follower’s recorded
and most likely fixations.

TABLE III
Gaze Dialogue FOLLOWER’S GAZE FIXATIONS PROBABILITIES

D. Action Anticipation for the Human–Human Interaction

In the HHI experiments, only two actions are possible for
the leader, giving and placing, or the follower, receiving and
not-receiving. Taking into account the leader–follower relation,
a receiving action is associated with a giving action and not-
receiving to a placing action.

The prediction of a certain action combines the information
related to the follower’s current fixations, with the past
probability of the same action. The action probabilities are

PG(k + 1) = (1 − α)PG(k) + αδ(k) (2a)

PP(k + 1) = (1 − α)PP(k) + αδ(k) (2b)

where PG and PP denote the probabilities of giving and plac-
ing action, respectively, for each time step k, and α = 0.05.

TABLE IV
PROBABILITIES FOR GIVING AND PLACING ACTION WITH RESPECT TO

THE LEADER’S GAZE FIXATION

The update δ(k) depends on the values of Table IV, evalu-
ated for each gaze fixation of the leader at time k. In the HHI
experiment, the leader is “instructed” which action to perform
(giving or placing). The action is unknown to the follower
who needs to understand it from the nonverbal communica-
tion cues. The Gaze Dialogue Model infers the leader’s action
from the leader’s eye-gaze fixations and, in turn, generate the
follower’s eye-gaze fixations and action.
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Fig. 8. Action anticipation results on the entire HHI dataset on classifying
the actions as a placing or giving action, respectively.

The follower’s Action Anticipation system uses the leader’s
observed gaze fixations. Each gaze fixation is associated with
the probability to choose between two actions as given in
Table IV. The probabilities were derived from the duration
of each gaze fixation for each action, as given in Table I,
divided by the total duration of gaze fixation throughout the
HHI experiments. Table IV shows that the leader fixations at
the brick or at his/her own hand are negligible for both actions,
as the probabilities are close to 50%. Instead, other gaze fixa-
tions provide stronger gaze cues toward one of the two actions.
The leader’s gaze fixation at the FF, hand, or tower clearly
communicates the intention of giving the brick, whereas gaze
fixations at his own tower, presumably to visually guide the
arm to properly place the brick, become strong cues for the
placing action.

The Action Anticipation System is composed of two sig-
nals that represent the probabilities for the giving (PG(k)) and
placing (PP(k)) actions, over time, with the initial values set
to 50%. These signals are updated in each iteration. First, the
action is selected based on the leader’s current gaze fixation
and the probabilities shown in Table IV. For example, if the
leader’s fixates the FF there is a 84.1% chance to select a giv-
ing action and a 15.9% to select a placing action. Based on
the selected action, the δ values of (2a) and (2b) are updated
to calculate the value of the signals PG(k)) and PP(k) for the
next time k. In case the leader gaze fixates the FF, and the
placing action is selected, the δ of 0.159 is used for the signal
PP(k) and −0.159 for the signal PG(k). The output signals
PG(k) and PP(k) are smoothed with a moving average, and
normalized with respect to the number of samples (i.e., the
number of gaze fixations observed) collected up to time k.
This approach is similar to a Markov Reward Process [36]
that adds a reward signal to each state. In our case, the pur-
pose is to decide which type of action, in order to prevent
oscillatory behavior of the action prediction.

The accuracy of the Action Anticipation system are shown
in Fig. 8. The action is classified either as placing or giving
when the prediction reaches the region marked with a shaded
color (set empirically as above 70%). A giving action can be

Fig. 9. Change of the signals PG(k) (blue line) and PP(k) (red line) with
respect to the leader’s gaze fixations for giving (two top figures) and placing
action (two bottom figures).

correctly classified at around 60% completion which for an
action that takes on average 2 s to finish, the system has a reac-
tion time of 1.12 s. As for a placing action, it takes longer to
predict, around 80% completion, which puts the reaction time
at 1.36 s. The slower prediction could be caused by a prolong
period of time fixating the brick, as shown in Fig. 3, which
brings ambiguity to the system. In Fig. 9 there are two exam-
ples where, in the beginning, the Action Anticipation system
cannot predict which of the actions is the leader performing.
When the leader gaze fixation switches to the FF or hand,
the probability for giving increases, and when the leader gaze
fixations switch to his own tower, the probability for placing
increases. The relation between the PG and PP signals is used
to predict the leader’s action, AL

k+1.
The main conclusions from the modeling with human exper-

iments are: 1) the Gaze Dialogue Model can generate gaze
fixations for the giving and placing actions that are similar
to the ones observed in the HHI data; 2) the Gaze Dialogue
Model can predict accurately the follower’s next gaze fixations,
when provided with the leader’s real gaze fixations, from the
HHI dataset; and 3) it is possible to predict the correct actions
from the gaze fixations using our Gaze Dialogue Model. The
next section describes how to incorporate the model in a
human–robot interaction scenario.

V. HUMAN–ROBOT INTERACTION EXPERIMENT

This section addresses the validation of the Gaze Dialogue
Model in an HRI scenario. We start by describing the two types
of HRI: 1) robot-as-a-leader and 2) robot-as-a-follower; how-
ever, the focus of this work will be on robot-as-a-follower, for
reasons that will become clearer below. Second, we describe
the human-in-the-loop system, which is important for the
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Fig. 10. Egocentric view of the human from the head-mounted eye-tracker
with a red-marker indicating the current human fixation.

Fig. 11. Red ball detection is marked by the yellow circle, and the human
gaze fixation is the green hallow circle.

interaction between robot-as-a-leader and robot-as-a-follower.
The section finishes with a discussion on the results of HRI
experiments and an analysis of the interaction in comparison
to the HHI experiments.

Both HRI experimental scenarios, robot-as-a-leader and
robot-as-a-follower, share three main common aspects. First,
the human actor is equipped with the Pupil Labs eye tracker,
introduced in Section III, to track the human gaze fixations
while (s)he interacts with the robot. The software interface
and the gaze fixation point are shown in Figs. 10–13. Second,
concerning the low-level controllers, the eye-gaze saccadic
movements in the iCub is driven by the Cartesian 6-DOF gaze
controller described in [37]. As for the arm movements, a min-
imum jerk Cartesian controller is applied to control the iCub’s
arm and torso [38]. The iCub motor controllers run at 50 Hz.
The HRI validation was made using the HHI dataset. The
human switching from fixating the brick to another region-
of-interest is usually associated with the beginning of either
the giving or the placing action. Since in the robot-as-a-leader
the leader is always aware of the action, it does not require
any feedback from the follower. As such, the robot-as-a-leader
scenario does not require the robot to sense any data from the
human. In this work, we assume that once the robot takes the
leader’s role, the Gaze Dialogue Model generates the robot’s
gaze fixations and plans its action to execute either a giving
or a placing action. The eye-gaze communication and arm
movements are assumed to be communicated and ‘read’ by
the human follower. The leader’s eye-gaze communication for
giving or placing actions is determined as the most likely gaze
fixations observed in the HHI dataset. The robot-as-a-leader
can be seen in the supplementary video material.

A. Robot Setup in the Leader–Follower Scenario

HRI experiments were carried out with the iCub robotic
platform [39]. The iCub is a humanoid capable of performing

Fig. 12. All the important regions and correct labels are identified. Additional
objects which are not relevant are considered outliers.

Fig. 13. Experimental setup for the HRI scenario. Human subject is wearing
a head-mounted eye-tracker and the relevant objects are present.

actions that are “legible” to humans [24]. It has two cameras,
on the head of the robot, that are capable of vergence and
version, in a way similar to the human oculomotor control
system.

In the case of the robot-as-a-follower, the human wears
the eye-tracking system during placing and giving actions.
As the robot has to follow the interaction, it has to interpret
the relevant gaze fixations from the human. In this sce-
nario, the human is part of the control loop, by providing
feedback to the robot controller through his/her gaze fixa-
tions. This information is streamed, in real-time, to allow the
robot to predict the human gaze fixations and actions while,
also in real-time, generating the robot’s own gaze fixations
and planning the robot’s own actions. Fig. 14 illustrates the
human-in-the-loop modules involved in the HRI. In the next
section, we will go through the added steps taken to integrate
the human-in-the-loop in the robotic platform.

B. Human-in-the-Loop System

In the presented human-in-the-loop system, the human gaze
fixations are provided to a robot. This is achieved from the
eye-tracker data which composes of RGB image frames (from
the eye-tracker world camera), and a 2-D pixel location of
the Gaze Fixation Point that is segmented and labeled in the
Object Detection and Face Detection systems. The segmen-
tation and labeling procedure is inspired on the work from
Samira and Odobez [40] which involves tracking region in the
image fixated by the human observer. The following sections
explain the necessary to segment, label, and communicate all
the important eye-gaze fixations to the robot.

1) Gaze Fixation Point: The first step in the implemen-
tation of the diagram of Fig. 14 involves synchronizing the
gaze fixation point provided by the LSL network [34], and
the video frame received directly by the Capture software.
The gaze fixation point is marked by a green hollow circle
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Fig. 14. Diagram illustrating the connections between the different modules
that make up the communication of the human eye gaze to the robot fixations.
The first module is related to the software that acquires the data from the eye
tracker—Captured by Pupil Labs [33]. From this module, we collect the 2-D
fixation point of the subject’s gaze projected onto the world view camera
on the eye tracker. The stream of the world view camera, together with 2-D
gaze fixations through LSL network [34] (latency < 0.1 ms), is sent to the
VFOA algorithm module to track the relevant fixations. The final module is
the implementation of the Gaze Dialogue model described in Section IV.

Fig. 15. Action anticipation results for HRI trials on classifying the actions
as a placing or giving action, respectively.

in Fig. 11, and it is recorded at 120 Hz. The world camera,
that is, the egocentric view of the human, is published at 60
frames per second (FPS). Since the frequency of the gaze fix-
ation stream is two times faster than the stream of the world
camera, we process every two gaze fixation points from the
buffer sent by the LSL network. Whenever the green hollow
circle, that is, the human eye-gaze fixation, is inside a region
of interest, the visual focus of attention (VFOA) algorithm
classifies the fixation point as a valid state Sk, and it is sent to
the Gaze Dialogue model. The VFOA is inspired on the con-
cept from [41] where it classifies important eye-gaze fixations
the states Sk and, correspondingly, the observations Ok.

2) Object Detection: To classify the objects we use a
color-based algorithm which extracts the relevant colors as
the relevant objects to the HRI setup. The VFOA algo-
rithm outputs the current object fixated if the Gaze Fixation
Point is inside the region of one of the detected color

TABLE V
ASSOCIATED LABEL TO THE COLORED OBJECT IN THE HRI SETUP

objects. An example of an HRI setup with the VFOA algo-
rithm classifying objects of different colors with its corre-
sponding label is in Fig. 12. Table V identifies the objects,
with the corresponding colors, extracted in the HRI experi-
ments and the associated label given to the Gaze Dialogue
Model.

3) Face Detection: For detecting the iCub’s face, we apply
a Haar cascade classifier algorithm. We created a new cascade
trained with real images of the iCub’s face. This classifier can
detect the iCub’s face in the HRI scenario quite accurately
with very few false positives during the trials. Fig. 12 shows
all the regions of interest, including the iCub’s face, detected
from the VFOA algorithm output.

The Gaze Dialogue Model was implemented in the Human-
in-the-loop system as follows. First, the human eye-gaze
fixations are used as observations Ok and the robot’s gaze fix-
ations as the current state Sk. Second, the robot can predict the
leader’s gaze fixation ŜL

k+1 and action ÂL
k+1, using the appro-

priate HMM in Table II and the Action Anticipation algorithm
from Section IV-D. Third, the predictions are fed into the
Planning/Control block. Fourth, The posterior decoding exe-
cutes to generate the follower’s gaze fixations S′F

k+1. Finally, the
leader’s predicted action is used to plan the follower’s action
SA′F

k+1. This information is used to determined which HMM
model to apply in the iteration k + 1 to generate the next eye-
gaze communication and arm movement of both leader and
follower. The follower’s gaze fixations are given as input to the
robot eye controller [37] to drive the eyes toward the correct
3-D space gaze fixation point. The Action Anticipation system
decides whether the robot starts its arm movement toward the
handover location, in the case of giving, or stand still, in the
case of a placing action.

C. Results of the Human–Robot Interaction Experiments

Concerning the robot-as-a-follower experiments, we instruct
the human to perform the two types of actions plus an
additional one: 1) giving; 2) placing; and 3) fooling. The
first two actions are the same used for the HHI experiment,
hence the subject interacting with the robot, albeit naive to
the previous experiment, acted naturally without any further
instructions. A total of 40 trials with one participant, 20 trials
performing both placing and giving actions. The human-in-
the-loop system with the Gaze Dialogue Model ran online at
20 FPS and each step Ok+1 is a labeled human gaze fixation.
Fig. 15 shows the mean and standard deviation of the Action
Anticipation systems for all of the trials in the HRI scenario.
Most of the interactions are correctly classified (average of
75% or above) with 40 iterations which correspond to around
4–5 s of real-time human gaze fixation sequence.
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Fig. 16. Human and iCub’s fixations when human as a leader is fooling
a robot (starts with giving and after some time switches to placing action):
leader’s gaze fixations (top); probabilities of follower’s fixations (middle);
follower’s decoded most likely gaze fixations (bottom).

Fig. 17. Robot’s action prediction when a human is fooling a robot (starts
with giving and switches to placing action).

As for the third (fooling) action, the subject is instructed to
cause a perturbation during the execution of a handover (giving
action) by switching to a pick & place (placing action). The
purpose is to show the active adaptation of the Gaze Dialogue
Model to the different gaze fixations of the human. Fig. 16
shows the human gaze fixations. During the fooling action,
the human begins handing over, and before completion, the
human places the brick in her/his workspace. During the first
200 steps, the human gaze fixations are mostly on the fol-
lower’s tower, which correlates with a giving action. After
the 200th step, the human fixates his/her own tower, which
is consistent with a placing action. According to its gaze fix-
ations generated by the model, the robot initially fixates its
tower, before successively fixating the LF and the LT. In short,
the results of the gaze fixations for the fooling action illus-
trate a fast reaction to the nonverbal gaze communication cues
exhibited at runtime. The Gaze Dialogue Model is capable of
updating and revert the action classified.

In addition to the recorded gaze fixation probabilities,
Fig. 17 shows the output of the Action Anticipation system
and the predicted action of the human at each iteration. As the
interaction starts, the Gaze Dialogue Model and, more specifi-
cally, the Action Anticipation system, predicts a giving action.
The decision concerning the giving action was made when
the difference between the signals PG(k) and PP(k) exceeds a
predefined threshold. The threshold is empirically determined
and it influences how fast the Gaze Dialogue Model reacts to
nonverbal communication cues. This decision was used by the

robot to decide whether the action is giving, as well as to start
its arm movement, that is, arm reaching toward the handover
location, or a placing action, to move the arm back to the
rest position and continue observing. Once the leader fixates
his/her tower, the probability for a placing action increases. As
a result, the robot returns to its rest position while observing
the human performing a placing action. This experiment vali-
dates the capability of the Gaze Dialogue Model to: 1) adapt to
human gaze fixations; 2) update the action observed; 3) gen-
erate correct coupling robot-as-a-follower gaze fixations; and
4) plan the according action. All of this simultaneously and
in real-time.

These tests lead us to the following conclusions: 1) the Gaze
Dialogue Model is capable of generating gaze fixations, in the
robot-as-a-follower, from human gaze fixations in real-time;
2) the gaze fixation sequence generated respect the human-like
behavior observed in the HHI; 3) it can successfully predict
the human action from gaze fixations in an HRI scenario;
and 4) the human-in-the-loop system can translate online the
human VFOA into relevant gaze fixations during the HRI
experiments. Overall, the Gaze Dialogue Model learns from
human eye-gaze cues the human action intention.

VI. CONCLUSION

The proposed Gaze Dialogue Model predicts the leader’s
gaze fixations and the action is inferred from the leader’s gaze
fixations. The posterior decoding is used to plan the follower’s
gaze fixations, based on previous fixations and the observed
leader’s gaze fixations. The inferred leader’s action is used for
both: 1) predicting the leader’s gaze behavior and 2) posterior
decoding of follower’s gaze fixations.

Our contributions emerge during dyadic interactions involv-
ing individuals (placing) actions and actions-in-interaction
(giving) actions. We implemented the model using the data col-
lected during HHI experiments. The data consisted of paired,
synchronized gaze fixations of people involved in the collabo-
rative task. The Gaze Dialogue Model combines four HMMs
that are selected based on the role of the person, leader or fol-
lower and two types of action: giving and placing for each role.
The model was implemented in the iCub robot controller and
tested in HRI scenarios. For the robot-as-a-leader scenario, the
iCub produces nonverbal gaze communication signals (illus-
trated in the supplementary video.GazeDialogue.ieee-2022)
that correlate with the instructed action and may thus be
interpreted by the human. For the experiments in the robot-
as-a-follower case, we use a human-in-the-loop approach, and
the human gaze fixations are fed back to the model running in
the robot controller. The human-in-the-loop allows the robot
to: 1) infer the human action and 2) to adjust its gaze fixations
according to the human action.

The iCub eye-gaze saccadic controller performed gaze fix-
ations at a speed approximate to a human, which allows for
an accurate representation of the Gaze Dialogue Model on the
robot. On the other hand, due to hardware restrictions, the arm-
motor movements were slower on average to a human. This
delay between the eye-gaze fixations and the arm movements
when performing actions resulted in longer execution times
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when compared to the HHI experiments. Since the modeling
of the robot’s behavior is based on the HHI experiment data, if
we have a robot with similar human arm-movements speeds,
it is possible to achieve a more natural behavior of the robot.
Another limitation is on the human–human social dynamic
where the leader’s goal is solely to concentrate on the task
at hand without having to take the follower’s actions into
account. Therefore, the leader’s action was considered to be
known, and the model was deterministic, corresponding to the
most likely gaze fixations of a human as a leader.

For future work, we will apply the Gaze Dialogue Model
to more complex interactions, such as in collaborative assem-
bly tasks where sequence of pick-and-place and handovers
are present. This has the goal of exploring the advantage of
including eye-gaze nonverbal communication in human–robot
scenarios. We also want to evaluate the response time of the
action prediction system in comparison to other approaches
of human action prediction. The quantitative analysis of the
human gaze fixations, as well as the reaction time are some of
the metrics to evaluate the prediction capabilities of the model.
The “mutual” action understanding is a field worth exploring
in the context of social interaction and collaborative tasks for
both human–human and human–robot contexts. Another step
is to extend the model to handle new fixation points and/or
missing/incomplete sequence of eye-gaze fixations.

We have stressed the importance of the Gaze Dialogue
between two humans during an interaction, and how much
information and coordination is achieved by this means. The
Gaze Dialogue Model we proposed succeeds in partially cap-
turing this interindividual coordination and, thus, provide a
transparent mechanism that contributes to enhance the quality
of interaction between humans and future generation of robots.
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